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The beauty of physics lies in the extent to which complex and seemingly
unrelated phenomena can be explained and correlated through a high level of
abstraction by a set of laws which are amazing in their simplicity.

"With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk."

John von Neumann





Etymology of algebra: from the arabic
word al-jabr in the title of the 9thC book
"Ilm al-jabr wa l-muqābala", translated
as "The Science of Restoring and Bal-
ancing" by the Persian mathematician
and astronomer al Khwarizmi. His name
Latinized as Algorithmi gave rise to
modern terms algorism and algorithm.
His book on arithmetic, Algorithmo
de Numero Indorum introduced the
Indian number system and decimals to
Europe.
Rene Descartes lends his name to the
Cartesian coordinate system, though
the concept was developed by Fermat a
couple of years before Descartes, in the
17th C.

Introduction

The study of mechanics and mechanical motion is ancient, with a rich his-
tory of discoveries, both material and fundamental. Its understandings are
distilled from a lot of painstaking hard work - with intrigue, conspiracies,
rivalries, murder and executions thrown in for good measure, as with any
other human endeavours. The labour of a string of individuals, in the early
modern era has culminated in what we call today Classical Mechanics.
Copernicus, Tycho Brahe, Kepler, Galileo, Descartes, Fermat, Newton, La-
grange and Hamilton were some who made notable contributions to the
development of classical mechanics. The contributions of Copernicus, Tycho
Brahe and Kepler primarily derived from observing motion of celestial ob-
jects. Galileo and importantly Newton reconciled experimental observations
with mathematical analysis leading to the development of the physics of
mechanics. Development of the mathematical ideas and tools were advanced
by the bold ideas of Descartes and Fermat - especially in unifying geometry
and algebra giving rise to analytical geometry, which paved the way for
independent yet contemporaneous development of calculus by Leibniz and
Newton.

Today, the physical laws of nature are divided into two realms, the Classi-
cal and the Quantum. Notionally, the latter encompasses the former, which
anyway is applicable only to describe the macroscopic world. However, the
role of classical mechanics in development of quantum mechanics is im-
mense. Not only did the failure of the classical laws in describing physical
observations lead to the formulation of quantum mechanics - but devel-
opment of classical mechanics also laid the ground work for the language,
mathematics and the analytical techniques used in quantum mechanics.
The material that we will cover as a part of this course are still vital to var-
ious areas of modern research, from space travel and robotics to chaos and
weather prediction. Description of much of the mechanical and electrical
universe around us are based on these formulations and understandings.

To begin with, Classical Mechanics (CM) deals with physical laws
describing the motion of “point" particles in space. It is also applicable
to extended objects like "rigid bodies", represented as a continuum - a
continuous collection of point particles. A part that deals with (geometrical)
description of motion, with out reference to the forces or causes and their
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Figure 1: Antikythera mech-
anism: The largest gear is ap-
proximately 13 cm in diameter
and has 233 teeth

Figure 2: Antikythera mecha-
nism: A modern reconstruction
from 2007

origins is known as kinematics e.g. Kepler’s laws of planetary motion.
Dynamics, on the other hand deals with the forces and causal relationships,
e.g. the laws expounded by Isaac Newton.

The Clockwork Universe

Newton’s laws introduced determinism or predictability in the mechanical
universe and led to the concept of the “clockwork universe”, which was
popular during the European enlightenment. It is best described in the
words of Samuel Clarke;

"The Notion of the World’s being a great Machine, going on without the
Interposition of God, as a Clock continues to go without the Assistance of a
Clockmaker; is the Notion of Materialism and Fate, and tends, (under pre-
tence of making God a Supra-mundane Intelligence,) to exclude Providence
and God’s Government in reality out of the World."

Here the universe is visualised as a perfect machine, with cogs, gears and
wheels governed by the laws of physics, making every aspect of the machine
predictable. Though determinism was a new concept, the kinematic repro-
ducibility in the paths of heavenly bodies had been known since antiquity.

The earliest known example of a machine predicting the workings of the
universe is the Antikythera mechanism (figure 1), which is an ancient Greek
orrery used to predict astronomical positions and eclipses decades in advance.
The instrument has been described as the oldest example of an analogue
computer and is believed to have been designed and fabricated by the Greeks
between 87 BC - 205 BC. It was discovered near a shipwreck off the Greek
island of Antikythera in 1901. More than a hundred years later, a team from
Cardiff University, UK used computer aided x-ray tomography and imaging
to view the inner fragments of the device and read the inscriptions on the
machine. The 3D tomography images suggest that the instrument had 37
bronze gears enabling it to follow the movements of the Moon and the Sun
through the zodiac, to predict eclipses and even model the irregular orbit
of the Moon. Based on the images a working model was reconstructed as
shown in figure 2. See the following links for related documentaries and
talks;
1. BBC: The Antitkythera Mechanism. 2. Youtube: Stanford Univ.

https://www.bbc.com/reel/playlist/ancient-mysteries?vpid=p09pcwp1
https://www.youtube.com/watch?v=xWVA6TeUKYU


Refs: Raychaudhuri Chapter 1
Refs: Goldstein, Poole, Safko Chapter 1

Figure 3: Title page of first
edition 1687

The Laws as compiled by Isaac Newton
in Principia Mathematica.

Lex I: Corpus omne perseverare
in statu suo quiescendi vel movendi
uniformiter in directum, nisi quatenus
a viribus impressis cogitur statum illum
mutare.

Lex II: Mutationem motus propor-
tionalem esse vi motrici impressae, et
fieri secundum lineam rectam qua vis
illa imprimitur.

Lex III: Actioni contrariam semper
et æqualem esse reactionem: sive
corporum duorum actiones in se
mutuo semper esse æquales et in partes
contrarias dirigi.

The Reality of Newton’s
Laws

In the 17th century, Issac Newton formulated 3 physical laws that essen-
tially laid the foundation of modern mechanics. The laws are deterministic
in nature and describe accurately the dynamics of point particles and rigid
bodies, under the application of forces. The triumph of Newton lies in the
law’s relative simplicity and wide applicability. Newton used the same laws
to explain the kinematics of earthly objects, e.g. the swinging motion of a
pendulum, and to explain the kinematics of heavenly bodies, i.e. Kepler’s
laws of planetary motion, in combination with Newton’s laws of gravity.

Newton’s 1st Law

Every body persists in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
force impressed.

Newton’s 2nd Law

The rate of change of momentum of a body is proportional to the force im-
pressed on the body, and happens along the straight line along which that
force is impressed.

Newton’s 3rd Law

To every action there is always an equal and opposite reaction.

We intuitively think we understand what these laws mean, after all each
of us have studied these same laws for at least 8+ years. But, do we fully
comprehend the inherent assumptions made in writing the laws, which are
required to test their validity and interpret the implications. Let us take a
closer look, especially at the underlined phrases in the laws.

1. What exactly is a ‘body’? Surely not all objects qualify, which will satisfy
Newton’s Laws. Say we take a cube of butter, a block of wood and a
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The upshot is that given this second
order differential equation and specified
initial conditions, we can exactly
determine the trajectory of the ensuing
motion - and then extrapolate it both
backwards and forwards in time. This
is in principle the be all and end all of
Newtonian mechanics.

frog; all sitting at rest (on a very smooth table) and give each the same
push. Their ‘reactions’ will not be the same. Most likely the butter will
deform, the block slide forward and the frog croaks, jumps and perhaps do
something more to express its displeasure. Idealisation as point particles
and rigid bodies seem to fit the bill. A point particle is one without any
internal structure, even a planet is approximated as a point particle for
analysing its orbital motion (but not its spinning or rotational motion).
An extended body can be thought to be composed of many point particles,
leading to a continuum. The notion of rigid body is then imposed by
requiring that the distance between any two pairs of point particles is a
constant (|~rij| = |~ri − ~rj| = cij). Think about the implications of this
last statement - it also implies that information can be communicated
at infinite speed! Note that the notion of a particle is central to CM, the
state of which is fully described in terms of the particle’s position and
velocity. Specifying the two will let us compute the position and velocity
of the particle at all times provided all external influences or forces on the
particle are known. So these are the kinematic variables.

Now consider a time bomb sitting at rest which explodes at a pre-
determined time. There was no impressed force to cause the bomb to
explode - so how does the first law apply in this case?

2. What is meant by ‘state of rest’ or ‘moving uniformly in a straight
line’? Again you’ll appreciate that the state of rest or uniform motion is
definitely not absolute, it depends on the state of the observer. Specifically
you know that Newton’s laws are only valid in certain reference frames
called inertial frames of reference. Thus one might say that the 1st law
actually defines an inertial frame from which to make the experimental
observations that verify Newton’s laws. They also define the concept
of Galilian Invariance or Newtonian Relativity. Crucially, the 1st law
also presupposes an obvious fact that an observer can measure time
intervals continuously and absolutely. For without that we cannot
measure quantities like velocity or acceleration.

3. Now what exactly is a force? The concept of force not only means physi-
cal push or pull or contact forces but also non-contact forces, those that
act at a distance e.g. gravity, electrostatic attraction or repulsion etc. The
gravitational force is regarded as an external force while analysing the
motion of a pendulum. But, how does force affect the motion of a body?
The 2nd law gives us exactly that, a mathematical formulation of force,
namely;

∑~Fi =
d~p
dt

(1)

where the LHS refers to the vector sum of all the forces acting on a body
whose linear momentum is defined as ~p = m~v. Assuming that the
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The strong law of action and reaction
states that the force that a particle
exerts on another is directed along
the line joining the two particles, i.e.,
(~ri −~rj) ‖ ~Fij

inertial mass is a constant it gives us,

∑~Fi = m~a (2)

where~a is the acceleration of the body. Equation 1 can easily be gener-
alised for a system of particles and also for a system where mass in not a
constant.

4. What is the reality of a force? Consider 2 observers, A standing in an
inertial frame and B standing in a box falling freely under gravity. Each
will observe that the other is accelerating in the opposite direction, but
what do they conclude. A would say that since the box (carrying B) is
not at rest or in uniform motion there must be a force acting downward
- attributed to the gravitational pull. B will also conclude that A is
being acted upon by an upward force - but here the problem starts, that
upwards force is not attributable to anything! One might say that both
the desperately trying to save Newton’s Laws, A does so successfully but
B fails! B fails because he violates the causal relationship, another basic
requirement of Newtonian Mechanics. Obviously, all measurements must
be done from an inertial frame, else we run into trouble.

5. The Principle of Superposition is evidently implicit in the modern
mathematical formulation of the second law; equation 1.

6. Conservation of linear momentum. The total linear momentum of a
system of particles is given by ~P = ∑~pi = ∑ mid~ri/dt and d~P/dt =~Fext,
which implies that if ~Fext = 0 then ~P remains constant - Conservation of
linear momentum in the absence of external forces.

7. Conservation of angular momentum in the absence of external
torque. Consider the total angular momentum of a system of particles,
moving under the action of no external forces (~Fext) but finite mutual
interactions ~Fij.

~L = ∑~li = ∑~ri × ~pi

=⇒ d~L/dt = ∑ d~ri/dt× ~pi + ∑~ri × d~pi/dt

d~L/dt = ∑ d~ri/dt× ~pi + ∑~ri × (∑~Fi(ext) + ∑~Fij)

d~L/dt = ∑ d~ri/dt× ~pi + ∑~ri ×∑~Fi(ext) + ∑~ri ×∑~Fij

The first term in the RHS vanishes due to the cross product and so does
the second term in the absence of external forces. Now if the mutual
interaction forces, Fij are (i) equal and opposite as given by Newton’s
third law and (ii) lie along the line joining the particles; then the third
term also equals zero. If the external force is non-zero then;

d~L/dt = ∑~ri ×∑~Fi(ext) = ~N(external)

where ~N is the external torque acting on the system and implied that~L is
conserved if ~N(external) = 0.
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Figure 4: 2 charge particles
Q1 and Q2. The curved lines
denote the magnetic field.

"We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at a
certain moment would know all forces that
set nature in motion, and all positions of all
items of which nature is composed, if this
intellect were also vast enough to submit
these data to analysis, it would embrace
in a single formula the movements of the
greatest bodies of the universe and those
of the tiniest atom; for such an intellect
nothing would be uncertain and the future
just like the past would be present before its
eyes."

Pierre Simon Laplace (1749–1827) on
the nature of Newton’s Laws

8. Reciprocity
Let us discuss an apparently non-obvious problem with the 3rd Law. Con-
sider 2 positively charged particles (Q1 and Q2) are moving with velocity
~vi along perpendicular directions, 1 along x and 2 along negative y, as
shown in the figure. The electrostatic forces between the charge particles
at any instant are repulsive, equal in magnitude and are directed away
from each other along the line joining the particles, i.e. they conform to
the 3rd law. The reason of course is that the electric force is proportional
to Q1× Q2 and is directed along the vector that points from one charge
toward the other. (Similarly, gravitational forces also conform to the 3rd
law because the gravitational force is proportional to m1 × m2 and is
dependent on the vector that points from one mass toward the other)

The magnetic force of interaction is quite different. Q1 subtends zero
magnetic field at the location of Q2 thus no Lorentz force acts on Q2.
Q2 however does subtends a finite magnetic field at the location of Q1,
pointing into the page. Thus Q1 experiences a Lorentz (magnetic) force
on it, in the +y direction. The forces acting on the particles 1 and 2 are
given by;
~F1 = Q1~v1 × ~B2 6= 0 and ~F2 = Q2~v2 × ~B1 = 0
i.e. ~F1 6= ~F2. Clearly the magnetic force does not adhere to the 3rd law.
Thus the 3rd law is not fundamental but rather a relationship that applies
to electrostatic and gravitational interactions but not to all types of
interactions in general.

9. Conservation of linear momentum is commensurate with Newton’s third
law but conservation of angular momentum has the additional require-
ment i.e. (~ri −~rj) ‖ ~Fij. In the case of the 2 charged particles neither
are the interaction forces equal and opposite to each other, nor is the total
angular momentum of the 2 particle system a conserved quantity - even
in the absence of external forces. We interpret the electromagnetic forces
between the particles as internal to the system. The problem is salvaged
by redefining momentum by sacrificing its definition as a purely mechani-
cal parameter defined as ~p = m~v, but expanding its scope and assigning
momentum to the associated electromagnetic field.

Features of Newton’s Laws;

• Assumes homogeneity of space and time

• They are deterministic in nature

• Motion is continuous but relative

• Time is continuous and absolute

• Defines inertial reference frames: frames wherein Newton’s Laws are
valid
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• Concept of Causality and Principle of Superposition

The above features puts in certain obvious limitations on formulation and
application of the laws.

Laws of Physics

Laws of physics are relationships between measurable quantities, enunciat-
ing their interdependence. For example, Coulomb’s law gives the dependence
of the electric force on a point charge on another point charge and the dis-
tance between them;

~F =
1

4πεo

Q1 ×Q2

r2 r̂ (3)

Though the exact form of any such equation would require experimental
validity much can be deduced between the physical dependencies of indepen-
dent dimensional parameters, indeed even arrive at functional relationships
i.e. functional form of a dependent variable on independent variables. Con-
sider the following problem;

In an atomic explosion, a large amount of energy E is released within a
small region, and a strong spherical shock wave develops at the point of
detonation. Estimate E knowing that the wavefront reaches a distance r at
time t.
It is reasonable to assume that the atmospheric pressure is negligible com-
pared to that of the shock wave. Thus we can write, r = f (E, ρ, t), where ρ

is the density of air at equilibrium. Using dimensional analysis show that
the functional relationship will be of the form;

r ∝
E1/5 × t2/5

ρ1/5 (4)

The proportionality constant will be O(1).

Inertial and Gravitational Mass

Newton also deduced the gravitational force law given by;

~Fij = −Gmimj
~ri −~rj

|~ri −~rj|3
(5)

where G = (6.6726 ± 0.0008) ×10−11 Nm/kg, (first measured by Henry
Cavendish in 1798). The functional form guarantees that Fij = Fji. Now
a very important and special feature of this “inverse square law” force is
that a spherically symmetric mass distribution has the same force on an
external body as it would if all its mass were concentrated at its center.
Thus, for a particle of mass m near the surface of the earth, ~F = m~g where
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~g points towards the earth’s center and g = GMe/R2
e ' 9.8m/s2 is the

acceleration due to gravity at the earth’s surface. Newton’s Second Law now
says that~a=-~g, i.e. objects accelerate as they fall to earth. However, it is
not a priori clear why the inertial mass which enters into the definition of
momentum should be the same as the gravitational mass which enters into
the gravitational force law. If the gravitational mass took a different value,
m∗ then Newton’s Second Law would read;

~a = −m∗

m
~g (6)

and unless the ratio m′/m were the same number for all objects, then bodies
would fall with different accelerations. The experimental fact that bodies in a
vacuum fall to earth at the same rate demonstrates the equivalence of inertial
and gravitational mass, i.e. m′ = m.
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Homework

1. Prove that if the forces acting on a particle are conservative i.e. derivable
from a scalar potential, then the total energy i.e. kinetic + potential, of the
particle is conserved.

2. For a system of N particles of masses mi and position ri show that;

M
d2~R
dt2 = ∑~Fi (7)

where ~R is the centre of mass and M total mass of the system of particles.

3. Show that for a single particle with constant mass the equation of motion
implies the following differential equation for the kinetic energy:

dT
dt

= ~F.~v (8)

while if the mass varies with time the corresponding equation is;

d(mT)
dt

= ~F.~p (9)

4. Consider a vertical disk rolling without slipping on the xy plane. Show
that the equations of constraint are given by;

dx− a sin θdφ = 0 (10)

dy + a cos θdφ = 0 (11)

5. The escape velocity of a particle on Earth is the minimum velocity re-
quired at Earth’s surface in order that the particle can escape from Earth’s
gravitational field. Neglect any resistance due to the atmosphere and
existence of the Moon, From the conservation theorem for potential plus
kinetic energy show that the escape velocity for Earth is 11.2 km/s.

6. Rockets are propelled by the momentum reaction of the exhaust gases
expelled from the tail. Since these gases arise from the reaction of the
fuels carried in the rocket, the mass of the rocket is not constant, but
decreases as the fuel is burnt and expelled. Show that the EOM for
a rocket projected vertically upward in a uniform gravitational field
neglecting atmospheric friction, is;

m
dv
dt

= −v′
dm
dt
−mg (12)

where m is the mass of the rocket and v′ is the velocity of the escaping
gases relative to the rocket. Integrate this equation to obtain v as a
function of in, assuming a constant time rate of loss of mass. Show, for
a rocket starting initially from rest, with v′ equal to 2.1 km/s and a mass
loss per second equal to l/60th of the initial mass, that in order to reach
the escape velocity the ratio of the weight of the fuel to the weight of the
empty rocket must, be almost 300!





Constraints and
Generalized Coordinates

In general, 3 independent space coordinates or degrees of freedom (DOF) are
required to uniquely specify the position of a point particle in the 3D space.
And for a N particle system we require 3N coordinates. Spatial coordinates
in the Cartesian coordinate system have the dimension of unit length, but
that is not true for other Euclidean coordinate systems e.g. spherical polar or
the cylindrical coordinate systems. Often to exploit the inherent symmetry of
a problem we find it convenient to use different coordinate systems, but the
biggest casualty of choosing these non-Cartesian systems is sacrificing the
simple mathematical form of Newton’s 2nd Law;

~F = m~̈r =⇒ mẍ = Fx; mÿ = Fy; mz̈ = Fz

in the Cartesian system but in the spherical polar system,

mr̈ = Fr; mθ̈ 6= Fθ ; mφ̈ 6= Fφ

In principle, starting with the 2nd law and the knowledge of all forces acting
on a system and proper initial conditions allow us to solve the differential
equations to obtain the trajectory of the system. Here the force term F
incorporates all forces acting on the system both "external" and "internal"
forces. While the external forces may be known upfront the "internal" forces
are not known apriori, and often have to be solved for as a part of the solving
the problem itself. Such is the case with constraint forces.

Restrictions on the general motion of a system of particles are known
as constraints. Ensuring that motion is compliant with the constraints
is guaranteed by the corresponding forces of constraint. These forces are
often unknown to us a priori, thereby rendering the problem unsolvable
upfront. Indeed at times these forces are determined as a part of the solution.
We encounter many constraints even in our everyday life. Say your group
of friends want to travel from Trivandrum to Kolkata and you are tasked
with finding a route. The easiest solution would be to follow a straight line
connecting the 2 cities. However, that would require a tunnel to be dug
through the earth, which being impractical you will be constrained to restrict
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Holonomic

Non-Holonomic

your path to the surface of the earth. But any path along the surface will
also not be practical and your group will be restricted to move along a path
through the existing highways or rail network connecting the two cities.
Here, we encounter a connectivity problem subject to multiple constraints
which restricts the number of options and can deliver solution(s) subject to
the constraints. Another example would be the cabin baggage allowance of
airlines. Some airlines restrict carry-on cabin bags via their dimensions e.g.
the sum of its dimensions (length + breadth + height) to a fixed value, say
75 cm. From among the range of bags available in the market passengers are
constrained to choose one among a subset of bags that conforms to the above
stipulated rule. We will revisit these problems in the next chapter.

Similarly, in mechanics, the presence of constraints restrict the motion of
a particle or system of particles to a subspace or region of the overall space.
Let us consider a couple of examples to understand constraints better;

I. Consider the case of a simple pendulum of length l, that moves in a ver-
tical plane under the action of gravity. The motion of the bob, a point
particle that is, (1) constrained to move in the vertical plane would indi-
cate that we need only 2 coordinates (x, y) or (r, θ) to describe its position,
additionally (2) the presence of the rigid, massless string constraints the
bob to move such that x2 + y2 = l2 constant or r = l constant. Here,
the presence of the 2 constraints shows that out of the 3 DOF only one is
independent and the other two are dependent. Thus the simple pendulum
has only one DOF.

II. Consider a ball dropped from a height H onto a rigid floor. The ball
bounces on the floor and executes an up-down motion. The constraint on
the particle’s (ball’s) motion is given by z ≥ 0.

III. A box full of gas in which the molecules are restricted to the volume
inside the box. The walls constrain the particles from moving out.

IV. Consider a rigid body composed of N point particles, where N is a very
large number. In general we require 3N coordinates to describe the
motion of the body of N particles. However, for every pair of particles
there is an equation of constraint rij= constant and there are NC2 =

N(N − 1)/2 such equations i.e. one for every pair of particles. But all
these equations of constraints are not independent of each other and we
can show that finally a rigid body has 6 degrees of freedom i.e. requires 6
independent coordinates to describe its motion. Can you prove this?

Mathematically constraints can be expressed as equations, inequalities,
differentials or integrals and may be classified into 3 categories;

1. Equalities of the coordinates fλ(xi; t) = 0 (λ = 1, 2, ....k)

2. Inequalities like fλ(xi; t) ≥ 0 (λ = 1, 2, ....k)
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Imposing constraints on the system
is simply another way of stating that
there are forces present in the problem
that cannot be specified directly but are
known rather in terms of their effect on
the motion of the system.

Generalized coordinates do not neces-
sarily have the dimension of length but
can be any independent measurable
variable specifying the state of the
system

3. Linear non-integrable relations between differentials of the coordinates

here f is a function of all coordinates and time and k is the number of
constraints. The first kind of constraints are called holonomic constraints
and the last two types are called non-holonomic constraints. The second
kind of constraint can be made holonomic by stipulating that infinite forces
(potentials) act on the particles in the regions where the constraint inequality
is violated. Dealing with nonholonomic constraints of the third kind is non-
trivial and we will not be discussing them extensively though will revisit
them occasionally. Further if f is an explicit function of time t then those
constraints are called a rheonomous constraints and if not then they are
called scleronomous constraints.

As mentioned earlier, inclusion of constraints poses some challenges
which need to be understood and overcome. Firstly, all the coordinates (e.g.
x, y, z), are no longer independent and secondly, the forces of constraint, e.g.,
the tension in the string of the pendulum or the force exerted by the wall on
the gas particles, are not known to us and must be determined as a part of
the solution to the original problem. In cases with holonomic constraints
fλ(xi; t) = 0, the first problem is solved by introducing generalized coordi-
nates or those 3N − k number of coordinates. If there exists k constraint
equations, they can be used to eliminate k of the 3N EOMs. Thus the system
now has 3N − k independent coordinates and same number of DOF This
elimination of the dependent coordinates can be done by introduction of
3N − k independent variables (q1, q2, q3, .....q3N−k) called the generalised
coordinates defined in terms of the old position variables as;

~ri =~ri(q1, q2, q3, .....q3N−k, t) (13)

where i runs from 1 to N. The above equations can then be inverted (trans-
formed), subject to the equations of constraint to obtain 3N − k equations of
the form;

qi = qi(r1, r2, r3, .....rN , t) (14)

It is assumed that the backward and forwards transformation between ri

and qi is always possible. The generalized coordinates are NOT necessarily
orthogonal position coordinates, appearing in groups of 3 i.e. (x, y, z) or
(r, θ, φ) or (ρ, φ, z). Many quantities can be used as generalized coordinates,
with dimensions of charge, current, energy or angular momentum etc.
Remember, that if the constraint is non-holonomic, the equations expressing
the constraint cannot be used to eliminate the dependent coordinates. But
there are alternative ways of addressing such problems.

The second problem i.e. the forces of constraint, are not known before-
hand. This can be addressed by developing a prescription of formulation of
mechanics such that the need to know the constraint forces can be dispensed
with and we work with only the known external forces. This can be effected
by demanding that the net work done by the forces of constraint is zero!
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What do you think about the work done by constraint forces in the case of
the simple pendulum and for the ball bouncing on the rigid surface? Can
you show that in both cases the work done by the constraint forces vanishes?
Those interested in reading further about the topic can look up d’Alembert’s
Principle.

Consider the simple pendulum again oscillating in a vertical plane, we
have 2 DOF (x, y) and one equation of constraint x2 + y2 = constant, which
tells us that there is effectively only 1 DOF. Now consider the coordinates
(r, θ) where r2 = x2 + y2 and tan θ = y/x and the inverse transformation
x = r sin θ and y = r cos θ. Out of the new coordinates (r, θ), r is a
constant (=length of the string) and thus we require only 1 independent
coordinate to describe the entire motion of the bob. Here, θ is the generalised
coordinate for the case of the simple pendulum.

Finally, given Newton’s 2nd Law and its information content we under-
stand that second order differential equations relating the second derivative
of the coordinates with force allows us to determine the trajectory of the
system. Thus to completely specify the state of the system we need to si-
multaneously specify both its generalised coordinates (qi) and their first
derivatives i.e. the generalised velocities (q̇i) at a instant of time. Only then
is the state of the system completely determined. Note that specification of
(qi) alone is not sufficient, for without q̇i at the same instant the system
is free to evolve in infinitely many ways. The second derivative is only
uniquely determined if the velocities are also known. Since both the qi’s and
the q̇i’s need to be specified to completely determine the system, in principle
they are deemed to be independent quantities apriori. The final solution once
we solve the problem will determine the time evolution of the qi(t) whence
both q̇i and q̈i may be determined at every instant.
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Homework

1. Find 10 examples of the 3 different kinds of constraints discussed and
their equations or inequalities.

2. Two point particles are joined by a rigid weightless rod of length l, the
center of which is constrained to move on a circle of radius a. Express the
kinetic energy in generalized coordinates.
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"But the real glory of science is that we
can find a way of thinking such that the
law is evident."

– Feynman (The Feynman Lectures in
Physics, volume I)

1 Pierre de Fermat (1607 -1665): French
mathematician, noted for his pioneering
work in analytic geometry, especially
determining tangents to curves that led
to the early development of differential
calculus.
2 Euclid’s articulation of the variational
principle explained the law of reflection
i.e. equality of the angles of incidence
and reflection

Calculus of Variations and
the Principle of Least
Action

Let us revisit the two problems we discussed at the beginning of the pre-
vious chapter. In the first problem you were required to find a route from
Trivandrum to Kolkata, additionally now you are tasked to do it via the
shortest route. Again, the shortest route would be through the gedanken
tunnel connecting the 2 cities. Constrained to move on the surface of the
earth, the shortest route would be along a geodesic connecting the 2 cities,
which is only practical via air travel and not by any mode of land travel.
For the later you’ll be constrained to the existing road or rail network. Here,
we encounter an optimisation problem (shortest route) subject to multiple
constraints. In the second problem, on choosing the right cabin baggage
the airline puts the constraint that length + breadth + height= 75 cm. A
passenger has to follow that but would obviously want to maximize the
volume of the bag to carry as many things as possible. So what should be the
dimensions of the bag such that its volume (length× breadth× height) is
maximum while conforming to the stipulated rule. Out of the infinite com-
bination of the 3 variables, you can probably guess that the correct answer
is a cube of side a = 75

3 cm, which maximises the volume. But how we prove
these?

Having known calculus, you are familiar with taking derivatives and
finding the extrema of functions. In physics extremisation principles applies
to various problems e.g. finding equilibria, energy minimisation, entropy
maximisation, ray optics etc. The Principle of Least Action derives itself
from the branch of mathematics known as the calculus of variations. The
most well known application of the variational principle is perhaps Fermat’s
principle1 that explains the laws of reflection and refraction of light, which
says that light travels between two points along a path such that the time
taken is the least. With ideas and applications dating back to antiquity2,
modern studies into this powerful analytic technique was re-initiated by
Euler in the 18th century; after the development of calculus by Leibniz and
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Figure 5: Local and global
extrema of the function
cos(3πx)/x, (0.1 ≤ x ≤ 1.1)
3 S is known as an integral functional, a
generalisation of a function.
A function maps a set of input numbers
to a resulting number by the transfer
function, i.e. z = f (x, y) maps an input
(x, y) to an output number z. Similarly,
a functional maps a function or a set of
functions to an output set of numbers.

here η(x) quantifies the variation to
Q(x)

Newton.

The Calculus of Variations

We are all quite familiar with the problem of finding minima or maxima or
extrema values of a function and the concepts of global and local maxima
and minima. Systems in equilibrium are found to be at an extrema of
its potential landscape; specifically a minima for stable equilibrium. In
determining the above we search for a set of values of variables e.g. spatial
coordinates for which the potential function is minimum, albeit within a
specified region of space, i.e. allowed values of the variables.

Calculus of variations also deals with differential calculus of functions
with a twist. Here, we search for an optimal function Q(x), such that the
integral, S of another function f (Q(x), Q′(x); x), is extremal within a
specified boundary (x1, x2).3 Mathematically it means, determine a function
Q(x) such that the integral of the function f , which is given to you, is an
extremum.

S =
∫ x2

x1

f (Q(x), Q′(x); x)dx (15)

A few examples will help illustrate the matter. Say we dip a circular wire
ring into a soap solution and bring it out. A soap film will span the wire
ring, but our problem is to find the equation of the surface (Q). Our physical
understanding says that the surface will be such that the total surface area
(A), in reality the surface energy, of the soap film will be a minimum. What
is the constraint here in this problem? A much easier problem deals with
the finding the equation of a curve, joining 2 points on a plane, such that
the length of the curve is minimum. In other words, prove that the shortest
distance between 2 points on a plane is a straight line? which we know
- intuitively. What about the shortest distance between 2 points on the
earth i.e. surface of a sphere? Note: In the above equation x represents the
independent variable, Q(x) the dependent variable and Q′(x) = dQ/dx.
The function Q(x) is then varied until an extremal value of S is found.
That is, if a function Q(x) gives the integral a minimum value, then any
neighbouring function, no matter how close to Q(x), will increase S.

So how do we go about finding that optimal function Q(x) such that S
is an extremum? Lets vary Q(x) in the following way, using a parameter α

and an arbitrary function η(x);

Q(α, x) = Q(0, x) + αη(x) (16)

we only require that η(x) has a continuous first derivative and is equal to
zero at the endpoints i.e. η(x1) = 0 and η(x2) = 0. This is because value of
the varied function Q(α, x) must be identical with Q(x) at the endpoints of
the path i.e. Q1 = Q(x1) and Q2 = Q(x2). With this varied function the



29

integral above becomes;

S =
∫ x2

x1

f (Q(α, x), Q′(α, x); x)dx (17)

In function theory the notion of a stationary value for a line integral cor-
responds to the vanishing of its first derivative i.e. S has the same value
to within first order infinitesimals as that along all the varied paths. The
necessary condition that the integral have a stationary/extremum value is
that;

∂S
∂α
|α'0 = 0 (18)

for all functions η(x). Differentiating S wrt α we get;

∂S
∂α

=
∂

∂α

∫ x2

x1

f (Q(α, x), Q′(α, x); x)dx (19)

∂S
∂α

=
∫ x2

x1

(
∂ f
∂Q

∂Q
∂α

+
∂ f

∂Q′
∂Q′

∂α
)dx (20)

Now;

∂Q
∂α

= η(x) (21)

∂Q′

∂α
=

dη

dx
(22)

The above differential equation becomes;

∂S
∂α

=
∫ x2

x1

(
∂ f
∂Q

η(x) +
∂ f

∂Q′
dη

dx
)dx (23)

The second term may be integrated by parts;∫ x2

x1

∂ f
∂Q′

dη

dx
dx =

∂ f
∂Q′

η(x)|x2
x1 −

∫ x2

x1

d
dx

(
∂ f

∂Q′
)η(x)dx (24)

The first term vanishes since η is zero at the endpoints, then the differential
of the integral becomes;

∂S
∂α

=
∫ x2

x1

(
∂ f
∂Q

η(x)− d
dx

(
∂ f

∂Q′
)η(x)dx (25)

=
∫ x2

x1

[
∂ f
∂Q
− d

dx
(

∂ f
∂Q′

)]η(x)dx (26)

The functions Q and Q′ with respect to which the derivatives f are taken
are functions of α. Because ∂S/∂α = 0 must vanish for the extremum value
and because η(x) is an arbitrary function (subject to the conditions already
stated), the integrand in equation must identically vanish for α = 0, thus we
get;

d
dx

(
∂ f

∂Q′
)− ∂ f

∂Q
= 0 (27)
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The brachistochrone problem is famous
in the history of mathematics. The
name derives from Greek meaning
shortest time. It is the first variational
problem that was formulated and
solved by Johann Bernoulli, who posed
it to readers of Acta Eruditorum in
1696 and led Bernoulli to the formal
foundation of the calculus of variations.
Four mathematicians responded
with solutions: Isaac Newton, Jakob
Bernoulli, Gottfried Leibniz and
Guillaume de l’Hospital.
See the links Link 1 and Link 2

Figure 6: Time taken for trav-
elling along various paths
connecting A to B under action
of gravity.

where now Q and Q′ are the original functions, independent of α. This is
known as Euler’s equation, derived by Euler in 1744.

Note that the differential quantity ∂Q
∂α dα = ηdα ≡ δQ represents

infinitsimal variation from the right path (i.e. path for which δS = 0) at the
point x and corresponds to the concept of “virtual displacement" that we
will talk about separately. Similarly the variation of S about the right path
may be written in terms of the parameter α as ∂S

∂α |α'0dα ≡ δS. Further the
equation 4.12 may be written as;

δS =
∫ x2

x1

[
∂ f
∂Q
− d

dx
(

∂ f
∂Q′

)]δQdx (28)

The notation δQ essentially denotes parametric variations between multiple
alternate paths.

Problem 1

Task: Find the equation of a curve joining 2 points (A - B) that lie on a
plane.
Condition: (i) the length of the curve is a minimum.
Total length of the curve;

length =
∫ B

A
dl =

∫ √
dx2 + dy2 =

∫ √
1 + (

dy
dx

)2dx (29)

now y[≡ Q] = y(x) => dy = y′(x)dx and f (y, y′; x) =
√

1 + y′2, the
corresponding Euler’s equation reads;

d
dx

(
∂
√

1 + y′2

∂y′
) +

∂
√

1 + y′2

∂y
= 0 (30)

d
dx

(
∂
√

1 + y′2

∂y′
) = 0 (31)

∂
√

1 + y′2

∂y′
= A(constant) (32)

y′√
1 + y′2

= A (33)

(1− A2)y′2 = A2 (34)

y′ = constant =⇒ y(x) = mx + C (35)

which is the equation of a straight line - i.e. the shortest distance connecting
any 2 points on a plane.

Problem 2

Task: The Brachistrochrone: Determine the equation of the path taken by a
particle on moving from one point to another under the action of gravity, on
a vertical plane.

https://youtu.be/Cld0p3a43fU
https://en.wikipedia.org/wiki/Brachistochrone_curve
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Note that again f (y, y′) is not explicitly
a function of x. In such cases it can be
shown that f − y′ ∂ f

∂y′ = C, known as the
Beltrami Identity.

A tautochrone or isochrone curve is
a curve for which the time taken by
an object sliding without friction in
uniform gravity to its lowest point is
independent of its starting point on the
curve. A cycloid is a isochrone and is
traced by a point on a circle as it rolls
along a straight line without slipping.

Condition: The time taken by a particle to move from the higher point (A)
to the lower point (B), under the action of gravity is minimum. Time taken
to travel from a point A to point B is given by;

TAB =
∫ B

A

ds
v

(36)

where s is the arc length and v is the speed given by 1/2mv2 = mgy
(conservation of energy) =⇒ v =

√
2gy. Substituting back to equation 36

we get;

TAB =
∫ P2

P1

√
dx2 + dy2√

2gy

=
∫ P2

P1

√
1 + dy′2√

2gy
dx

here the function in the integrand is f (y, y′) =
√

1 + y′2/
√

2gy. The
corresponding Euler’s equation reads;

d
dx

(
∂(
√

1 + y′2/
√

2gy)

∂y′
) +

∂(
√

1 + y′2/
√

2gy)

dy
= 0

which can be simplified to show that;

(1 + y′2)y = 2k (constant)

The solution of this equation is given by the parametric equations,

x = k(θ − sin θ) (37)

y = k(1− cos θ) (38)

which yields the equation of a cycloid.

Problem 3

Task: Find the shortest path between two points lying on the surface of a
sphere of radius r - the equation of a geodesic.
Condition: The 2 points lie on the surface of a sphere.
Hint:The element of length on the surface of a sphere in the spherical polar

coordinates is; ds = r
√

dθ2 + sin2 θdφ2 and the integral functional is,

s = r
∫ 2

1
[

√
(

dθ

dφ
)2 + sin2 θ]dφ (39)

here f =
√
( dθ

dφ )
2 + sin2 θ. Find the equation of the geodesic and show that

cot θ = b sin(φ− a), where a, b are constants.
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Note that the variation to the path
at the end points is zero, i.e. the end
points are fixed

Problem 4

Task: Catenary: Find the shape of a rope/chain of uniform mass density
λkg/m that hangs between two pegs that are at the same height, under the
action of gravity. (Hint: the chain will hang such that its potential energy is
minimised)

Euler-Lagrange Equation (of the first kind)

When the Euler equation is applied to mechanical (physical) systems it
is known as Euler-Lagrange equation. As discussed before, physical sys-
tems are described by n variables known as the generalised coordinates (qi)
and we are interested in obtaining the time dependence of these multiple
generalised coordinates i.e. qi(t), with t as the independent variable. The
instantaneous configuration of a system is described by specifying the q1...qn

coordinates that corresponds to a particular point in a n-dimensional hyper-
space where the q’s form the n coordinate axes - known as configuration
space. The system point moves in configuration space tracing out a curve -
determined by the time dependence of each qi(t). Remember (i) the configu-
ration space has no necessary connection with the physical three-dimensional
space, just as the generalised coordinates are not necessarily position coordi-
nates and (ii) the path traced by the system point in the configuration space
has no resemblance to the path in space of any actual particle; each point on
the path represents the entire system configuration at some given instant of
time.

Now consider the motion of mechanical systems, in which all forces
(except the forces of constraint) are derivable from a scalar potential that may
be a function of the coordinates, velocities, and time. Especially those where
the potential function only of the position coordinates i.e. conservative. In
such cases Hamilton’s principle states that

“The motion of the system from time t1 to time t2 is such that the inte-
gral (called the action or the action integral), S given below has a stationary
value for the actual path of the motion".

S
de f
=
∫ t2

t1

L(qi, q̇i; t)dt (40)

The above is the definition of S, an integral that yields a single number
characterising a path. Hamilton’s principle states that out of all possible
paths by which the system point could travel from its starting point at
time t1 to end point at time t2, in the configuration space it will actually
travel along that path for which the value of the Action i.e. the integral S is
stationary or extremum, i.e. δS = 0.

δS
δq(t)

= 0 (41)
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The action is the integral of a function L(qi, q̇i; t), called the Lagrangian,
which is a function of the generalised coordinates (you can go on visualising
them as spatial co-ordinates for ease of understanding but remember they
need not necessarily be so), their time derivatives and time. In other words,
any first-order change about the optimal path results in (at most) second-
order changes in S. As we shall see Hamilton’s principle replaces Newton’s
laws as the basic postulate in deriving the equations of motion (EOM) with
several advantages. It is integral to the treatment of classical fields, plays an
important role in quantum mechanics, quantum field theory and criticality
theories.

Compare with the equations framed earlier and note the following replace-
ments x → t; Q → qi; Q̇ → q̇i; f → L. Now lets compute the quantity δS
including the variations in the variables δqi and δq̇i.

δS =
∫ t2

t1

δL dt (42)

δS =
∫ t2

t1
∑

i
[

∂L
∂q̇i

δq̇i +
∂L
∂qi

δqi]dt (43)

=
∫ t2

t1
∑

i
[

∂L
∂q̇i

d
dt

δqi +
∂L
∂qi

δqi]dt = 0 (44)

Again integrating the first term in the integrand by parts and requiring that
all the variations δqi’s vanish at the end points we get;

δS =
∫ t2

t1

n

∑
i=1

[
d
dt
(

∂L
∂q̇i

) +
∂L
∂qi

]δqidt = 0 (45)

Since all the qi are independent and so are the variations δδqi, the part in
the square bracket must individually go to zero to ensure that δS is always
zero, irrespective of the actual variations.
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See section 6.7 of Marion and Thornton,
The δ Notation

4 You can treat this as a postulate on the
nature of variation, but do try to justify
it.

On the nature of "variations" δ

• qi are independent generalised coordinates and the variations δqi are
independent and arbitrary

• The variation of a time derivate is equal to the time derivative of the
variation4 i.e. δq̇i = d

dt δqi. Thus the variations δq̇i and δqi are not
mutually independent. In other words the variation δq̇i means either
the change induced in the tangent vector to qi(t) by the variation in the
curve, or it means the time derivative of δqi(t)

• Also note that taking variation δ of a functional is different from taking
its derivative i.e. δS 6= dS.

• δq are akin to virtual displacements of the generalised coordinates and
commensurate with the equations of constraints (they are necessarily
holonomic)

• Finally, like δS, δqis denote variation (and NOT differential) at every
point on the path in configuration space i.e. at each instant of time.
Note that there are no terms within the square brackets in equations 44
varying time itself. To reiterate, these variations are considered not with
evolution of time but keeping time fixed!

Following the derivation of Euler’s equation in the previous section where f
was a function of a single variable Q along with Q̇ and t, the corresponding
condition here is that L is a function of multiple independent generalized
coordinates qi, their time derivates and time. Note we have assumed that
any constraints present are holonomic thus yielding the independent qis.
Following the treatment outlined in the previous section we can derive
the Euler-Lagrange equations corresponding to each of the generalised
coordinates as below. This follows directly from the requirement that the
variations δqi are independent.

d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0........{i = 1, 2, 3, .....n} (46)

These are the Lagrange’s equations of motions that follow from Hamilton’s
principle for systems with holonomic constraints. But what of the function
L(q̇i, qi; t)? As it turns out that L = T −V, where T and V are the kinetic
and potential energies of the system being analysed. For the case of a particle
moving under the influence of a conservative force field (~F = −∇V(qi)).
Equation 4.25 requires that the integral of T−V is an extremum, not neces-
sarily a minimum. But in almost all important applications in dynamics it
turns out to be the minimum.
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Figure 9: A bob of mass m
hangs from a string of length l.

Problem 5

Consider the 1D harmonic oscillator i.e. a mass m attached to a massless
spring of stiffness k and the equilibrium position of x = 0.

L = T −V =
1
2

mẋ2 − 1
2

kx2 (47)

∂L
∂ẋ

= mẋ (48)

d
dt
(

∂L
∂ẋ

) = mẍ (49)

∂L
∂x

= kx (50)

d
dt

∂L
∂ẋ
− ∂L

∂x
= mẍ + kx = 0 (51)

Equation 51 is the EOM you are familiar with and is readily obtained using
Newton’s second law. You will not be blamed for thinking that this was
much ado about nothing! What could be done directly with the second law
has been derived in a circuitous fashion. But there are definite advantages of
what we are doing here so do bear with me.

Problem 6

Now consider the case of the simple pendulum. Using the plane polar
coordinate system, such that θ is the angle made by the string of length l
with the vertical downward direction, see figure 9. We can show that;

T =
1
2

ml2θ̇2 (52)

V = mgl(1− cos θ) (53)

L = T −V =
1
2

ml2θ̇2 −mgl(1− cos θ) (54)

∂L
∂θ̇

= ml2θ̇ (55)

d
dt
(

∂L
∂θ̇

) = ml2θ̈ (56)

∂L
∂θ

= −mgl sin θ (57)

d
dt

∂L
∂θ̇
− ∂L

∂θ
= θ̈ +

g
l

sin θ = 0 (58)

again the EOM is the same as derived from Newton’s law. Importantly,
in ALL these examples force did not enter the calculations at all. Neither
the force of gravity and its components, nor the forces of constraint i.e.
tension, in the case of the pendulum. Here, the EOMs were obtained only by
specifying the kinetic and potential energies.
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Figure 10: Bead on a parabolic
wire rotating with angular
speed ω.

Problem 7

Let’s consider another example. Find the frequency of small oscillations of a
simple pendulum placed in a railroad car that has a constant acceleration a
in the x-direction. The kinetic and potential energies are given by;

T =
m
2
(ẋ2 + ẏ2) V = mgl(1− cos θ) (59)

Now can we show that the frequency of small oscillations is given by;

ω2 =

√
a2 + g2

l
(60)

page 243 Ex 7.6 in Marion and Thornton

Problem 8

Consider the motion of a bead that slides along a smooth wire bent in the
shape of a vertical parabola z = cr2. The bead rotates in a circle of radius
R when the wire is rotating about its vertical symmetry axis with angular
velocity ω. Find the value of c. page 245 Ex 7.7 in Marion and Thornton

Euler-Lagrange Equations (of the second kind) & Cyclic
Coordinates

For all the problems solved above note that the Lagrangian of a system is not
explicitly dependent on time i.e. L = L(q̇i, qi). Now;

dL
dt

= ∑
i

∂L
∂q̇i

q̈i + ∑
i

∂L
∂qi

q̇i (61)

∵ Lagrange’s EOM is
d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0 (62)

=⇒ ∂L
∂qi

=
d
dt
(

∂L
∂q̇i

) (63)

Thus dL/dt can be written as;

dL
dt

= ∑
i

∂L
∂q̇i

q̈i + ∑
i

d
dt
(

∂L
∂q̇i

)q̇i (64)

= ∑
i

d
dt
(

∂L
∂q̇i

q̇i) =
d
dt ∑

i
(

∂L
∂q̇i

q̇i) (65)

=⇒ dL
dt
− d

dt ∑
i
(

∂L
∂q̇i

q̇i) = 0 (66)

=⇒ d
dt
{∑

i
(

∂L
∂q̇i

q̇i)− L} = 0 (67)

=⇒ {∑
i
(

∂L
∂q̇i

q̇i)− L} = constant (68)
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In calculus of variations this is known
as the Beltrami Identity, discovered in
1868 by Beltrami

Figure 11: Two point masses m1

and m2 connected by a string.

Figure 12: Simple pendulum
with moving support

This is the Euler-Lagrange equation of the second kind. Thus if the La-
grangian is not explicitly dependent on time then there exists a conserved
quantity or a constant of motion called H, which may be a function of q̇ and
q, as given by the equation below.

If
∂L
∂t

= 0 =⇒ {∑
i
(

∂L
∂q̇i

q̇i)− L} = H (constant) (69)

Now, a Lagrangian is a function of n independent generalised coordinates,
their time derivates and time. Assume out of the n generalised coordinates,
the jth one does not appear explicitly in the Lagrangian function - such a
coordinate is called a cyclic coordinate. The corresponding EOM then
reads;

d
dt

∂L
∂q̇j
− ∂L

∂qj
= 0 (70)

but the second term on the LHS ∂L
∂qj

=0 anyway, ∵ L is independent of qj.
Thus we can write;

d
dt

∂L
∂q̇j

= 0 (71)

=⇒ ∂L
∂q̇j

= pj = (constant) (72)

pj = ∂L/∂q̇j is known as the generalised- canonical- or conjugate-
momemtum. Conjugate momentum (∂L/∂q̇j) corresponding to each cyclic
coordinate (qj) is conserved and is a constant of motion.

Problem 9

Revisit Problem 6, that of the simple pendulum where L is independent of
time and calculate the conserved quantity. What is the physical identity of
the quantity? ref: page 20 of handwritten notes

Problem 10

Consider a horizontal surface (x, y) e.g. a frictionless tabletop, with a hole
at the centre (0,0). Two particles of masses mi and m2 are attached by a
massless, non-extendable string of length l. The string passes through the
hole on the table such that m1 rests on the table and m2 hangs vertically
below, under the action of gravity, as shown in fig: 11. Write the equations
of constraints and obtain the equations of motion of the system. ref: page 13
of handwritten notes

Problem 11

Consider a pendulum whose support can move along a horizontal line (fig:
12). Derive the EOM and the constants of motion if any. ref: page 17 of
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Figure 13: Principle of Least
Time: reflection of light
In 1662, Fermat announced the proof of
"Fermat’s Principle". Claude Clerselier,
a follower of Descartes and a leading
Cartesian replied "The principle you
take as a basis for your proof, to wit, that
nature always acts by the shortest and
simplest ways, is only a moral principle, not
a physical one—it is not and can not be the
cause of any effect in nature."

- The Best of All Possible Worlds:
Mathematics and Destiny, by Ivar
Ekeland (University of Chicago Press)

5 equivalent to saying δS = 0

handwritten notes

The Principle of Least Action, the Lagrangian & the
Equations of Motion

Historically, the concept of extremisation principles and their applications
started with the field of optics. Hero of Alexandria (2ndC) found that the
law governing reflection of light could be obtained by asserting that a
light ray, travelling from one point to another by reflection from a plane
mirror, always takes the shortest possible path. However, this does not
work for refraction of light, which allowed Fermat to conjecture that it
is time that must be minimised in the process and not the length. The
search for such principles is predicted on the notion that nature always
minimizes certain vital quantities when a physical process takes place. The
first application of a general minimum principle in mechanics in modern
times is due to Maupertuis (1747), who asserted that dynamical motion
takes place with minimum Action. Akin to Maupertuis definition of Action,
here we have identified Action as a quantity with the dimensions of length
× momentum or energy × time. The Least action principle forms the basis
of mechanics, optics, quantum electrodynamics, optimal control theory etc
and the maximum entropy principle (Clausiuss-Clayperon, Shannon) forms
the base of thermodynamics and information theory.

1. The integral called Action has the dimensions of energy × time or dis-
tance × momentum

2. The action integral assigns a value (number) to each of the infinite paths
connecting the initial and final points that the system may follow.

3. The value of S though depends upon the physics of the system being
considered. In classical mechanics the right path has the property that
“nearby” paths do not change the value of S appreciably5, and this is the
essence of a variational principle. This is like identifying a it critical point
condition among the various paths. Along that right path Newton’s 2nd
Law is satisfied.

4. The physics of the system is contained in the integrand, here given by the
Lagrangian L

5. Validity of the principle of least action itself is independent of the refer-
ence frame used - inertial/non-inertial or otherwise

6. However, the functional form of the Lagrangian given as L = T − V is
valid only in inertial frames along with other restrictions discussed before

7. Unlike Newtonian dynamics, the Lagrangian method deals only with
scalar quantities associated with the body (T and V), completely ignor-
ing force. This extends the applicability of a least action principle i.e.
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6 In Quantum Mechanics the number
associated with each path yields a
probability amplitude. Probability for
the system to move from the initial state
to the final via that path and is of the

form e
i
h S.

Hamilton’s principle to quantum mechanics, where forces are not known
upfront.6

8. Invariance of the Lagrangian: The Lagrangian is given by the difference
between the kinetic and potential energies - hence is a scalar function
and must be invariant with respect to coordinate transformations. Such
transformations are not restricted to orthogonal coordinate systems but to
generalised coordinates

9. The Euler Lagrange equations can be computed in any set of generalized
coordinates and they are also guaranteed to be correct

10. Uniqueness of the Lagrangian: The Euler-Lagrange equation reads;

d
dt
(

∂L
∂q̇i

)− ∂L
∂qi

= 0

where L = T −V, now say we take an arbitrary function F(qi, t) and add
its total derivative to L to create a new function L′.

L′ = L +
dF
dt

(73)

and
dF
dt

= ∑
i

∂F
∂qi

q̇i +
∂F
∂t

(74)

Lets substitute L′ for L in the Euler-Lagrange equation and see if its
satisfies the same;

d
dt (

∂L′
∂q̇i

)− ∂L′
∂qi

?
= 0 (75)

d
dt

∂
∂q̇i

(L + dF/dt)− ∂
∂qi

(L + dF/dt) ?
= 0 (76)

d
dt [

∂L
∂q̇i

+ ∂
∂q̇i

(∑j
∂F
∂qj

q̇j +
∂F
∂t )]−

∂L
∂qi
− ∂

∂qi
(∑j

∂F
∂qj

q̇j +
∂F
∂t )

?
= 0 (77)

d
dt

∂L
∂q̇i
− ∂L

∂qi
+ d

dt{
∂

∂q̇i
(∑j

∂F
∂qj

q̇j +
∂F
∂t )} −

∂
∂qi

(∑j
∂F
∂qj

q̇j +
∂F
∂t )

?
= 0 (78)

since L is the original Lagrangian it satisfies the Euler-Lagrange equa-
tion, sum of the first 2 terms of equation 78 is equal to zero, and we are
left to check if,

d
dt{

∂
∂q̇i

(∑j
∂F
∂qj

q̇j +
∂F
∂t )} −

∂
∂qi

(∑j
∂F
∂qj

q̇j +
∂F
∂t )

?
= 0 (79)

d
dt{

∂F
∂qi
} − (∑j

∂2F
∂qi∂qj

q̇j +
∂2F

∂qi∂t )
?
= 0 (80)

∑j
∂

∂qj
{ ∂F

∂qi
}q̇j +

∂
∂t{

∂F
∂qi
} − (∑j

∂2F
∂qi∂qj

q̇j +
∂2F

∂qi∂t )
?
= 0 (81)

∑j[
∂2F

∂qj∂qi
− ∂2F

∂qi∂qj
]q̇j +

∂2F
∂t∂qi
− ∂2F

∂qi∂t
?
= 0 (82)

So when will this equation 79 be satisfied? Obviously when

∂2F
∂qj∂qi

=
∂2F

∂qi∂qj
and

∂2F
∂t∂qi

=
∂2F

∂qi∂t
(83)
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What are the conditions on the function F for that to happen and impor-
tantly what are the physical implications of such a demand. I’ll leave it
as an exercise for you to figure out. So we realise that the Lagrangian
is no way unique and can be modified by addition of the time derivative
of well behaved function F such that the Euler-Lagrange EOM remains
unchanged.

What about the value of the new action integral S′ =
∫ t2

t1
L′(qi, q̇i; t)dt

with the new Lagrangian L′?

S′ =
∫ t2

t1

L′(qi, q̇i; t)dt (84)

=
∫ t2

t1

[L(qi, q̇i; t) +
dF
dt

]dt (85)

=
∫ t2

t1

L(qi, q̇i; t)dt +
∫ t2

t1

dF
dt

dt (86)

=
∫ t2

t1

L(qi, q̇i; t)dt +
∫ t2

t1

dF (87)

= S + F(qi, t1)− F(qi, t2) (88)

The original action is modified by the addition of constant terms depen-
dent solely on the end point coordinates. Thus the variation of the new
action δS′ = δS + δF(qi, t1)− δF(qi, t2). Since the variations are zero at
the end points i.e. δqi(t1) = δqi(t2) = 0, it implies that δS′ = δS = 0 i.e.
the variation of S′ is zero.

11. Ignorable or cyclic coordinates: Presence of cyclic coordinates implies the
existence of conserved quantities

12. The EL equations are a system of n second-order differential equations for
the curve qi(t)

Lagrange’s Equations with Undetermined Multipliers

Recall our discussion on types of constraints (page 13), especially type 3 i.e.
nonholonomic constraints that are non-integrable differentials of coordinates.
Before we learn how to tackle or account for such constraints directly lets
go back to the Euler’s Equation. Consider a system with 2 independent
variables Q1 and Q2 and the function f (Q′1, Q′2, Q1, Q2, x)

d
dx

∂ f
∂Q′i
− ∂ f

∂Qi
= 0 i = 1, 2 (89)

Now in deriving the above equation by requiring the variation of the func-
tional to be zero i.e. δS = 0 we considered the varied paths;

Qi(α, x) = Qi(0, x) + αηi(x) i = 1, 2 (90)
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and then demanded that;

dS
dα
|α=0 =

∫ 2

1
{( d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)

∂Q1

∂α
+ (

d
dx

∂ f
∂Q′2
− ∂ f

∂Q2
)

∂Q2

∂α
}dx = 0

(91)
Note:

• If the two Qi’s are independent and since their variations are arbitrary we
could conclude that the individual prefactors of ∂Qi

∂α must be = 0 for the
variation to be zero always.

• But if the Qi’s are NOT independent. There exists an constraint equa-
tion g(Q1, Q2, x) = 0 implying that only one of the 2 coordinates are
independent.

• In that case the variations η1 (= ∂Q1
∂α ) and η2 (= ∂Q2

∂α ), also are depen-
dent

• If we include the variation of Q1 and Q2 in the constraint equation of g
as g(Q1(α, x), Q2(α, x), x).

• Now g is a function of α and thus we can calculate its variation with α

as;

dg
dα

=
∂g

∂Q1

∂Q1

∂α
+

∂g
∂Q2

∂Q2

∂α
= 0 (92)

=
∂g

∂Q1
η1 +

∂g
∂Q2

η2 = 0 (93)

=⇒ η1 = −{ ∂g
∂Q2

/
∂g

∂Q1
}η2 (94)

Now from equation 91 we have;

dS
dα
|α=0 =

∫ 2

1
{( d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)η1 + (

d
dx

∂ f
∂Q′2
− ∂ f

∂Q2
)η2}dx = 0 (95)

But ∵ η1 and η2 are inter-related, we can write

dS
dα

=
∫ 2

1
{( d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)η1 − (

d
dx

∂ f
∂Q′2
− ∂ f

∂Q2
)(

∂g
∂Q1

/
∂g

∂Q2
)η1}dx

(96)

dS
dα

=
∫ 2

1
{( d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)− (

d
dx

∂ f
∂Q′2
− ∂ f

∂Q2
)(

∂g
∂Q1

/
∂g

∂Q2
)}η1dx (97)

Now ∵ η1 is arbitrary we can demand that for the above to identically be
equal to zero at α=0 the part in the curly brackets is always zero.

=⇒ (
d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)(

∂g
∂Q1

)−1 = (
d

dx
∂ f

∂Q′2
− ∂ f

∂Q2
)(

∂g
∂Q2

)−1 (98)

Note:
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• that the LHS and RHS of the above equation are derivatives of 2 arbitrary
functions f and g wrt to two different variables Q1 and Q2.

• The demand that they are equal can only be met only if they are both
equal to a quantity independent of either Q1 or Q2

Therefore we can write;

(
d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
)

∂g
∂Q1

−1
= (

d
dx

∂ f
∂Q′2
− ∂ f

∂Q2
)

∂g
∂Q2

−1
= −λ(x) (99)

Thus from the above we get 2 equations;

(
d

dx
∂ f

∂Q′1
− ∂ f

∂Q1
) + λ

∂g
∂Q1

= 0 (100)

(
d

dx
∂ f

∂Q′2
− ∂ f

∂Q2
) + λ

∂g
∂Q2

= 0 (101)

For the case of N variables Qi and several (k) constraint equations gj(Qi, x) =
0 we get;

(
d

dx
∂ f

∂Q′i
− ∂ f

∂Qi
) +

k

∑
j=1

λj
∂gj

∂Qi
= 0 (102)

Note:

• there is a λi corresponding to each constraint and they are known as the
Lagrange’s undetermined multipliers

• its not the equations of constraints gj that appear in the modified Euler’s

equation but only the differentials i.e. ∂g
∂Qj

- which may or may not be
integrable.

• the scheme allows accommodation of non-holonomic constraints where the
constraints may be expressed in terms of Q′i.

From the above we can generalise the application of Lagrange’s undeter-
mined multipliers to the case of the Euler-Lagrange equations of motion of N
coordinates and k constraints, where k < N.

L = L(q̇i, qi, t) i = 1, 2, ...., N (103)

Note: Here qi are not all independent. The k constraints are either given as;

gj = gj(q̇i, qi, t) j = 1, 2, ...., k (104)

or as;

∑
i

∂gj

∂qi
dqi = 0 (105)

or a mixture of the both of the above. And then we get N modified EL
equations given as;

d
dt
(

∂L
∂q̇i

)− ∂L
∂qi

+ ∑
j

λj(t)
∂gj

∂qi
= 0 (106)
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Special Cases of Frictional Forces

Frictional Force, fi = αivn
i F = ∑

p
i

αiv
n+1
i

n+1

for n=1 we get fi = αivi : F = ∑
p
i

αiv2
i

2 ,
which is the Rayleigh dissipation
function. Surface moving in contact
with another, d f = αvndA =⇒ F =∫

αvn+1

n+1 dA

We have one such equation corresponding to each of the coordinates which
are NOT independent of each other.
Note:

• since in Hamilton’s Principle the variations vanish at the end points

i.e. holds time constant at the endpoints, addition of a term
∂gj
∂t dt does

not affect the final EOMs - see connection with non-uniqueness of
Lagrangian discussed in previous section.

• what is the physical significance of λ(t)? Evidently in equation 106 the
last term has the dimension of force and thus are related to the forces of
constraints.

• problems where transformation to or identification of independent gener-
alized coordinates is not possible this offers an alternative route to obtain
the EOM

• applicable to cases where the constraint equations are expressed in terms
of generalised velocities and may be non-integrable.

Problem 12

Consider a disc of radius R rolling without slipping down an incline (angle
α). Derive the EOM discuss the forces of constraint. Note the constraint
may be expressed as g(x, θ) = x− Rθ = 0 or as ẋ = Rθ̇ =⇒ dx = Rdθ

ref: page 36 of handwritten notes, Ex 7.9 of Marion and Thornton and Page
49 Goldstein
Discuss the general case of a disc rolling down an incline but not necessarily
in a straight line. What are the equations of constraints in such a case?
What if the disc is allowed to tilt?

Problem 13

A particle of mass m rests on the top of a frictionless rigid hemisphere of
radius R. Derive the EOM and the forces of constraint. ref: Ex 7.10 of
Marion and Thornton

Problem 14

Revisit the Attwood’s Machine using undetermined multipliers. Derive the
EOM and the forces of constraint. ref: handwritten notes page 39

Velocity Dependent Potentials

Lecture Notes not available. Refer to the recorded lectures.
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Figure 14: Some simple trans-
formations

Not all transformations are symmetry
transformations. Consider a simple
Lagrangian, L = m

2 ~̇r
2 − V(r), where

r =
√

x2 + y2 + z2. You can easily show
that L is invariant under reflection and
rotation.

1. reflection: x′ = −x, y′ = y, z′ = z

2. rotation: x′ = x cos θ − y sin θ, y′ =
x sin θ + y cos θ, z′ = z,

but what about,

3. translation x′ = x + a, y′ = y, z′ = z?

Here L′(x′, y′, z′) 6= L(x′, y′z′), the
Lagrangian is NOT invariant under the
transformation.

Symmetry Transformations and Noether’s Theorem

Coordinate systems help us denote the "position" of a system in the 3D
Euclidean space around us. And because there are various coordinate
systems that are useful in different contexts we also need to understand the
transformations from one system to the other. We have already encountered
coordinate transformations like Cartesian to spherical polar or cylindrical
etc. Lately we have also encountered generalised coordinates which may
be more complex than mere spatial variables. There are various kinds and
classes of transformations that provide the link between the old and new
coordinate systems, and the information they carry.

• Coordinate Transformations:

Suppose we change our coordinates from (q, q̇, t) ←→ (q′, q̇′, t). The
original and the new Lagrangians are related by;

L′(q′, q̇′, t) = L(q(q′, q̇′, t), q̇(q′, q̇′, t), t)

Obviously the functional form of the Lagrangians in terms of the new
coordinates may be different, as may be the EOMs derived, but they will
be equivalent since the physics and the resulting evolution will be the
same.

Any such transformation (change of coordinates) may be viewed in 2
ways (i) active and (ii) passive. Active transformation: The change in
coordinates denote a real movement of the system point(s) in the con-
figuration space but the coordinate axes themselves remain the same as
original. Passive transformation: A new coordinate system has been in-
voked thus relabelling all points in configuration space. Transformations
such as translation, rotation, reflection all may be viewed as active or
passive transformations and both pictures are equivalent.

• Continuous Transformations: These are transformations that can
be written as a function of a continuous parameter(s) εi, such that
q′(t) = Q(εi, t) with Q(0, t) = q(t). The rotation and translation
transformations above are examples of continuous transformations,
with the εi being the rotation angles θ or the translation distances s,
respectively.

• Symmetry Transformations: Now, let’s consider transformations such
that the Lagrangian is invariant under the transformation;

L′ = L(q′, q̇′, t)

if the above holds, that the system is symmetric under the transformation
or that the transformation is a symmetry transformation of the system.
Here we require that in spite of relabelling of the coordinates, the form of
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the original Lagrangian still holds. Note: Any coordinate transforma-
tion will result in a perfectly valid transformed Lagrangian that will yield
a trajectory equivalent to the solution from the original Lagrangian, even
though the Lagrangians are different. Under a symmetry transformation,
not only are the trajectories equivalent, but the Lagrangians are the same.

Now consider a continuous symmetry transformation i.e. L′ =
L(q′, q̇′, t) where q′ = Q(ε, t). If Q(ε, t) is a symmetry transformation
of the L, then L′ does not depend on ε:

d
dε

L(Q, Q̇, t) =
d
dε

L(q, q̇, t) = 0 (107)

The above statement is counter intuitive since L(Q(ε, t), Q̇(ε, t), t) is
explicitly dependent on ε. To understand the implication of the above
consider the differential;

d
dε

L(Q, Q̇, t) =
∂L
∂Q

dQ
dε

+
∂L
∂Q̇

dQ̇
dε

= 0

Now since L satisfies the Euler Lagrange EOM d
dt

∂L
∂Q̇
− ∂L

∂Q = 0, the above
equation becomes;

d
dt
(

∂L
∂Q̇

)
dQ
dε

+
∂L
∂Q̇

dQ̇
dε

= 0

d
dt
(

∂L
∂Q̇

dQ
dε

) = 0

The first term in the parenthesis is the generalised momemtum correspond-
ing to the generalised coordinate. Thus the above implies;

d
dt
(

∂L
∂Q̇

dQ
dε

) =
d
dt
(p

dQ
dε

) = 0

=⇒ p
dQ
dε

= constant

The value of the constant may be evaluated for the case ε = 0 i.e. constant =
p dQ

dε |ε=0. In general, if a Lagrangian of N coordinates possesses a set of M
continuous symmetry transformations parameterized by parameters εi, then
there are M conserved quantities associated with the transformations given
by;

N

∑
k=1

p
dQk
dεi

∣∣∣∣
εi=0

(108)

Problem 15

A point particle moves in a gravitational field acting along −z direction and
consider the continuous transformation of translation by~s. The original
Lagrangian is,

L(x, y, z) =
m
2
~̇r2 −mgz
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Figure 15: Emmy Noether
Amalie Emmy Noether (23 March
1882 – 14 April 1935) was a German
mathematician who made important
contributions to abstract algebra.
Importantly in physics, Noether’s
theorem explains the connection be-
tween symmetry and conservation laws.
www.youtube.com/watch?v=tNNyAyMRsgE

under the transformation x′ = x + sx, y′ = y + sy, z′ = z + sz the new
Lagrangian is

L(x′, y′, z′) =
m
2
~̇r2 −mgz′ + mgsz

The new Lagrangian invariant if sz = 0 i.e., if the translation~s is perpen-
dicular to the direction of gravity. So the above transformation will be a
symmetry transformation if x′ = x + sx, y′ = y + sy, and z′ = z. Since the
transformation has 2 continuous symmetry transformations denoted by the
parameters sx and sy there will be two constants or conserved quantities;

px
dx′

dsx
|sx=0 + py

dy′

dsx
|sx=0 = px

px
dx′

dsy
|sy=0 + py

dy′

dsy
|sx=0 = py

which are the conventional mechanical momenta along the x and y direc-
tions.

Problem 16

Consider the motion of a point particle in a spherically symmetric potential
where the Lagrangian is given by L = m

2~̇r
2 − V(r) under the continuous

symmetry transformation of rotation about an arbitrary z axis x′ =
x cos θ − y sin θ, y′ = x sin θ + y cos θ, z′ = z. Corresponding to the single
parameter θ there will be one constant or conserved quantity,

px
dx′

dθ

∣∣∣∣
θ=0

+ py
dy′

dθ

∣∣∣∣
θ=0

= constant

px(x sin 0− y cos 0) + py(x cos 0− y sin 0) = constant

=⇒ xpy − ypx = constant = lz

which is the z component of angular momentum. Similarly, rotations about
the x and y axes would have yielded conserved quantities lx = ypz − zpy and
ly = zpx − xpz.

Noether’s Theorem

Equation 108 leads to Noether’s theorem, who proved that every differen-
tiable (thus continuous) symmetry of the Action of a physical system with
conservative forces has a corresponding conserved quantity and satisfies a
conservation law. However, the notion of invariance of the Lagrangian may
be extended to include t in addition to generalised coordinates. Therefore, in
general if the Lagrangian is invariant under small perturbations of the time
variable t and the generalized coordinates q we can write;

t→ t′ = t + δt

q→ q′ = q + δq

https://www.youtube.com/watch?v=tNNyAyMRsgE
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7 Hopefully, you can easily visualize
multiple rotations about different
axes, thus having multiple ε and
corresponding generators

where the perturbations δt and δq are small and under a continuous trans-
formation may be written as

δt = εT

δq = εQ

where ε is the infinitesimal transformation parameter coefficient corre-
sponding to each generator T of time evolution, and the generator Q of
the generalized coordinates. For translations, Q is a constant with unit of
length; for rotations, it is an expression linear in the components of q, and
the parameter ε an angle7. Using these definitions, Noether showed that for
M continuous transformations defined by a set of parameters εi there will be
a conserved quantity corresponding to each transformation given by;(

∂L
∂q̇
· q̇− L

)
Ti −

∂L
∂q̇
·Qi (109)

Time invariance: a Lagrangian that does not depend on time ( ∂L
∂t =

0) or is invariant under time translation. Here, T = 1 and Q = 0; the
corresponding conserved quantity is;

H = ∑
i
(

∂L
∂q̇i

q̇i)− L

identified as the total energy of the system. Homogeneity of time leads to
conservation of energy.
Translational invariance: a Lagrangian that does not depend on a par-
ticular coordinate (qk is cyclic or ignorable) or is invariant under changes
qk → qk + δqk. Here, T = 0, and Qk = 1 and the conserved quantity is the
corresponding conjugate momentum,

pk =
∂L
∂q̇k

Homogeneity of space leads to conservation of linear momentum. Rota-
tional invariance: a Lagrangian does not depend on the absolute orienta-
tion of the physical system in space or the Lagrangian does not change under
small rotation by an angle δθ about an arbitrary axis given by n̂. Such a
rotation transforms the Cartesian coordinates by r → r′ = r + δθ(n̂× r).
Here, T = 0 and ε = δθ and Q = n̂× r. Then Noether’s theorem states that
the following quantity is conserved,

∂L
∂q̇
·Qr = p · (n× r) = n · (r× p) = n · L

In other words, the component of the angular momentum L along the axis
of rotation n̂ is conserved. If the system is insensitive to any rotation (n̂
is arbitrary) then every component of L is conserved; or the total angular
momentum is conserved. Isotropy of space leads to conservation of angular
momentum.
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Problem 17

Revisit the damped harmonic oscillator (Homework Problem 19), for which
the correct EOM can be derived from a Lagrangian of the form;

L = eγt(ẋ2 −ω2x2)

Prove that this L is invariant under the transformation t′ = t + ε and
x′ = x− ε γx

2 . Remember that ε is small and ẋ′ = ẋ− ε γẋ
2 = ẋ(1− ε γ

2 ).
Show that the invariance of L leads to a conserved quantity given by;

px(ẋ− γx
2
)− L = constant

where px = ∂L
∂ẋ .
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Homework

Principle of Least Action and Euler’s Equation

1. Find the extremals for the integral J =
∫ x2

x1
f (y′, y, x)dx if the integrand

is given by (i)y′2 (ii) y2 + y′2 (iii) y/(1 + y′2) (iv) y′/(1 + y2)

2. Find the shape of the curve that encloses the largest area, such that the
length of the curve (perimeter) is a given constant.

3. Show that the geodesic on the surface of a right circular cylinder is a
segment of a helix.

4. Consider light passing from one medium with index of refraction n1, into
another medium with index of refraction n2. Use Fermat’s principle to
minimize time, and derive the law of refraction: n1 sin θ1 = n2 sin θ2.
Assume the interface between the media is a flat.

5. Find the ratio of the radius R to the height H ot a right-circular cylinder
of fixed volume V that minimizes the surface area A.

6. Find the shortest path between the (x, y, z) points (0,—1,0) and (0,1,0)
on the conical surface z = 1−

√
x2 + y2. What is the length of the path?

Note: this is the shortest mountain path around a volcano.

7. The corners of a rectangle lie on the ellipse (x/a)2 + (y/b)2 = 1. (a)
Where should the corners be located in order to maximize the area of the
rectangle? (b) What fraction of the area of the ellipse is covered by the
rectangle with maximum area?

Lagrange’s EOM

8. Consider the projectile motion of a particle under the action of gravity,
in a vertical plane i.e. 2D. Find the EOM in both Cartesian and polar
coordinates.

9. A particle of mass m is constrained to move on the inside surface of
a frictionless cone of half-angle α, under gravity. Determine a set of
generalized coordinates and determine the constraints. Find Lagrange’s
EOM. page 240 Ex 7.4 in Marion and Thornton

10. The point of support of a simple pendulum of length l moves on a mass-
less rim of radius a rotating with constant angular velocity ω. Obtain
the expression for the Cartesian components of the velocity and accelera-
tion of the mass m in terms of the plane polar coordinates. page 242 Ex
7.5 in Marion and Thornton

11. Consider an extension of classical mechanics where the Lagrangian is
of the form L(q, q̇, q̈; t) for the generalized coordinates q. Make use of
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Hamilton’s principle such that any variation for both q and q̇ vanishes at
the end points. Show that the EL EOM will then be given by;

d2

dt2 (
∂L
∂q̈

)− d
dt
(

∂L
∂q̇

) +
∂L
∂q

= 0

Now apply the above to the Lagrangian below and make any comments
that you can.

L = −m
2

qq̈− k
2

q2

12. The potential for an anharmonic oscillator is U = kx2/2 + bx4/4 where k
and b are constants. Find the equations of motion.

Time dependent problems

13. Consider a simple plane pendulum consisting of a mass m attached to a
string of length I. After the pendulum is set into motion, the length of the
string is shortened at a constant rate dl/dt = −α(constant). The sus-
pension point remains fixed. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the
conservation of energy for the system.

14. A particle of mass m moves in one dimension under the influence of a
force

F(x, t) =
k
x2 e−t/τ

where k and t are positive constants. Compute the Lagrangian and
Hamiltonian functions. Compare the Hamiltonian and the total energy,
and discuss the conservation of energy for the system.

15. The point of support of a simple pendulum of mass m and length b is
driven horizontally by x = a sin ωt. Find the pendulum’s equation of
motion.

Lagrange’s Undetermined Multipliers

16. Use the method of Lagrange undetermined multipliers to find the tensions
in both strings of the double Atwood machine, solved as Problem 14 in
solved examples.

17. A particle of mass m starts at rest from the top of a inverted hemisphere,
of radius R. Find the force of constraint and calculate the angle at which
the particle leaves the hemisphere.

18. A particle of mass m is suspended by a massless spring of length l. It
hangs, without initial motion, and is struck by an impulsive horizon-
tal blow, which introduces an angular velocity ω. If ω is sufficiently
small, it is obvious that the mass moves as a simple pendulum. If ω is
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Figure 16: Electrical Circuit

sufficiently large, the mass will rotate about the support. Use a Lagrange
multiplier to determine the conditions under which the string becomes
slack at some point in the motion. Acceleration due to gravity g acts
vertically downwards.

Velocity Dependent Potentials - Friction & Dissipation

19. In certain situations, particularly one-dimensional systems, it is possible
to incorporate frictional effects without introducing the dissipation
function. As an example, find the equations of motion for the Lagrangian
L = (ẋ2 − ω2x2)eγt How would you describe the system? Are there
any constants of motion? Suppose a point transformation is made of from
x → s the form s = xeγt What is the effective Lagrangian in terms of
s? Find the EOM for s. What do these results say about the conserved
quantities for the system?

20. In removing a tightly fitting cylinder from inside another, why do we
have to twist one with respect to the other as they are pulled apart -
similar to removing a cork from a bottle.

21. A flat circular disk of radius r is in contact, with a plane surface coated
with oil. Assuming the oil exerts a uniform viscous drag on every ele-
ment of area of the disk, show that the frictional forces coresponding to
x,y, are Fx = −Aaẋ, Fy = −Aaẏ and Fθ = −Aar2θ̇/2 where x, y locate
the center of the disk and θ its angular position. A = πr2 and a is the
viscous force per unit area per unit velocity. Note that each force depends
only on the corresponding velocity.

Applications to Electrical Circuits

22. Consider a series LCR circuit connected to a dc voltage source of emf Eo.
Using Kirchoff’s 2nd law write the dynamical equation for current/charge
flowing across the circuit. Now assuming charge (Q) as the generalised
coordinate write the Lagrangian of the system as the difference between
the kinetic (LQ̇2/2) and potential (Q2/2C) energy terms. Show that
effect of the resistor (R) can be dealt with by incorporating a dissipative
Rayleigh function.

23. A form of the Wheatstone bridge has, in addition to the usual 4 resis-
tances, an inductance in one arm and a capacitance in the opposite arm.
Set up the Lagrangian (L) and the Rayleigh dissipation function for
the unbalanced bridge, with the charges in the elements as generalised
coordinates. Using the Kirchhoff’s Laws as constraints on the currents,
obtain the Lagrange equations of motion, and show that eliminating the
undetermined multipliers reduces these to the usual network equations.
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Figure 17: Mechanical - Electri-
cal equivalence

Figure 18: Variable capacitor

Figure 19: Circuit with a re-
sistor R, inductance M and
variable capacitor C of area A.

24. Consider the circuit given in Fig 16 and write down the Lagrangian
of the circuit. Mii are the self inductance of the inductor, assume Mij

denotes the mutual inductance between 2 inductors.

25. In Fig. 17(a) a sphere of mass m is suspended in a viscous liquid from a
coil spring lo = unstretched length of spring, yo = elongation of spring
with m at rest, y = general displacement from rest position. We assume
that the only effect of the liquid is to exert a viscous drag −ay. Fig. 17
(b) represents a simple series electrical circuit. Lagrangian functions for
(a) and (b) respectively are LMe = mẏ2/2− k(y + yo)2/2 + mgy and
LEI = MQ2/2−Q2/C + EQ. Show that the systems are equivalent by
deriving their dynamical equations.

26. The inside half-cylinder A, Fig. 18, supported in a vertical position by
a thin elastic rod (torsional constant k) fastened along its axis at O, can
rotate within B. Assuming that the capacity of this variable condenser is
given by C = CO(1− θ/π) and that the rod is undistorted for θ = θ1,
obtain the Lagrangian and the dynamical equations of the circuit.

27. Referring to previous problem, Fig. 18, show that equilibrium values of
θ and Q are given by θ0 = θ1 − C0E2/2πk, Q0 = CO(1− θ0/π)E. It
can be seen from the physics involved that when the condenser is charged,
θ1 ≥ 0. Find equations of motion which determine the oscillations of θ

and Q about equilibrium values.

28. Each plate of the variable condenser in Fig. 19 , is free to move along a
line ab without rotation, under the action of a spring and the electric field
between them. Derive the Lagrangian and EOM.
L = 1

2 (m1 ẋ1
2 + m2 ẋ2

2 + MQ̇2)− 1
2 (k1x2

1 + k2x2
2) + EQ− 1

2 Q2(s−
x1 − x2)/A

Symmetry

29. Which of the following forces would violate mirror symmetry?
(a) ~F = q~E + q~v× ~B
(b) ~F = q~v× ~B + m~g
(c) ~F = qα~E× ~B
In the above, ~E is the electric field, ~B is the magnetic fields, ~g is the
acceleration due to gravity, and α is a constant.

30. Prove Noether’s Theorem. A continuous symmetry transformation yields
a corresponding constant of motion given by;(

∂L
∂q̇
· q̇− L

)
Ti −

∂L
∂q̇
·Qi (110)

Advanced Problems
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Pringle’s Potato Chips

31. Show that if K(ẋ, x) be any constant of motion, then the Lagrangian
L = ẋ

∫
K/ẋ2dẋ leads to the EOM. Acta Physica Austrtriaca 51,

293, 1979. Can you determine the function K for the damped harmonic
oscillator where the EOM is given by ẍ + 2βẋ + ω2x = 0

32. Is it really the Principle of Least Action?
Physical trajectories x(t) (obeying Newton’s 2nd law) are critical solu-
tions of the functional S(x) =

∫
Ldt, where L = T −V. The variational

principle is called the principle of least action since it is assumed that S
is minimized by the curve satisfying the EOM, but this is not necessary
condition for δS = 0. Akin to ordinary calculus, the existence of a critical
point indicates the existence of either a local maximum or a minimum or
a saddle point. But what can you say about the nature of the right path
x(t))? Expand the action to second order in variations. ∵ x(t) is the
right path,

S(x + δx) = S(x) + δ2S +O(δx3),

where δ2S is called the second variation of the action about the critical
path x(t). For a particle moving in 1-d, in a potential V(x) show that;

δ2S =
∫ T

0

1
2

(
m(δẋ)2 − ∂2V

∂x2

∣∣∣∣
x(t)

(δx)2

)
dt

Now is δ2S > 0? or δ2S < 0? or δ2S = 0? Can you argue that taking the
time interval T sufficiently small the second term in the integrand will be
much smaller than the first term thus making δ2S > 0, ∴ the action is
minimized on the right path?

33. Study Euler’s Theorem that states that if f (xi) is a homogeneous func-
tion of xi (i.e. f (αx) = α f (xi)) of degree n then we can show that;

∑
i

xi
∂ f
∂xi

= n f

Note the connection to the Kinetic Energy function which is a homoge-
neous function of ẋi of degree 2. Thus;

∑
i

q̇i
∂T
∂q̇i

= 2T

34. The shape of Pringle’s potato chips is a hyperbolic paraboloid.

The shape has many useful applications in the physical world from
stackable potato chips to structural building elements. Draw the shortest
path connecting any two points lying on the edge of such a chip? (3
points are marked in red for reference.) What about the equation of such a
path?





The centre of mass (CM) is defined as
the point where the mass-weighted
position vectors (moments) relative to
the point sum to zero.

Figure 20: Collection of point
particles and their CM.

Central Force Motion

Reference Frames

Let S and S’ be two reference frames. Let ~R be the position vector of S’ with
respect to frame S.~r denotes the position vector of a point particle with
respect to frame S and ~r′ denotes the position vector with respect to S’. The
position vectors are related by

~r = ~r′ + ~R (111)

And the relative velocity between the two reference frames is given by

~V =
d~R
dt

(112)

If the relative velocity between the two reference frames (~V) is constant
then, the relative acceleration between the two reference frames is zero, i.e.
~A = d~V

dt = 0. Then the reference frames S and S’ are called relatively
inertial reference frames.

The velocity of the point particle will be different when measured from
the two reference frames. If ~v denotes the velocity vector of the point particle
with respect to frame S and ~v′ denotes the velocity vector with respect to S’,
then the velocity vectors are related by

~v = ~v′ + ~V (113)

The Centre of Mass Reference Frame

Consider a collection of n point particles with position vectors given by ~ri.
In the S frame the CM is the mean location of a mass distribution in space
(see fig. 20) and is given by;

~RCM =
∑n

1 mi~ri
M

(114)

where M = ∑n
i=1 mi. Similarly the velocity of the CM is given by;

~VCM =
∑n

1 mi~vi
M

= ~ptotal (115)
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The total momentum of a system of
particles in the CM frame is equal to
zero.

Additionally, we can show that
the total energy of the system is a
minimum in the CM frame, compared
to all other inertial reference frames.

Figure 21: Two body system,
where~r = ~r1 − ~r2

Now consider the frame S’ attached to the CM. The velocity of each particle
wrt the CM frame (S’) is ~v′i = ~vi − ~VCM and the total momentum in S’ is;

~p′total = ∑ ~p′i =
n

∑
i=1

mi
~v′i =

n

∑
1

mi(~vi − ~VCM) (116)

=
n

∑
i=1

mi~vi −
n

∑
i=1

mi
∑n

j=1 mj~vj

M
(117)

=
n

∑
i=1

mi~vi −
n

∑
j=1

mj~vj = 0 (118)

From here-on we deal with 2 inertial frames:

• The Laboratory frame (S): this is the frame where measurements are
actually made

• The centre of mass frame (S’): this is the frame where the centre of mass
of the system is at rest and with respect to which the total momentum of
the system is zero

A system of 2 particles (interacting)

Consider a closed system of 2 point particles that are interacting with each
other through mutual interactive forces (e.g. gravitational forces) directed
along the line connecting them (i.e. central force). We require 6 position
coordinates defining ~r1 and ~r2 in S frame to describe the system, with the
Lagrangian given by;

L =
1
2

m1~̇r2
1 +

1
2

m2~̇r2
2 −V(~r) (119)

where~r = ~r1 − ~r2 and V(~r) scalar potential defining the interaction force
between the particles. We can easily show that in the absence of external
forces (closed system) the ~̈RCM = 0, i.e. the CM frame is an inertial frame
and moves with a constant velocity. Similarly, it is easily shown that the
kinetic energy in S is equal to the kinetic energy in S’ + the kinetic energy of
the CM, using the fact that ~p′total = 0.

In the CM frame (S’), sum of the mass moments is zero.

n

∑
1

mi
~r′i = 0 (120)

and the position vector of the Center of Mass (CM) is given by,

~R =
Σmi~ri

M
(121)
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8 In the presence of external forces
M~̈RCM = ~Fext

Figure 22: A binary system
showing the centre of mass
fixed at the common focii or the
two elliptical orbits. ~r = ~r1 − ~r2
9 Do you know what is the barycentre?

Figure 23: Vector transforma-
tion under rotation

were, M = Σmi. We also know that,

d~p
dt

= 0 (122)

=⇒ d
dt
(m1~̇r1 + m2~̇r2) = 0 (123)

=⇒ d
dt
(M~̇R) = 0 (124)

M~̇R = const (125)

i.e. ~̇R moves with constant velocity in the absence of external forces 8.
Having established that the S′ frame fixed to the CM is an inertial frame
(thus equivalent to S) we may shift our primary reference frame to the CM
frame, with the origin fixed to the CM of the binary system. As evident
in figure 22, the position vector of the CM is now ~R = 0. Further, ∵
m1~r1 + m2~r2 = 0 in the CM frame and~r = ~r1 − ~r2,

=⇒ ~r1 =
m2

m1 + m2
~r ~r2 =

−m1

m1 + m2
~r (126)

The L can be rewritten as;

L =
1
2

µ~̇r2 −V(r) (127)

with µ = m1m2
m1+m2

, the reduced mass of the binary system. For the Sun
- Earth binary system the CM lies within the boundary of the Sun ∵
MSun ≫ MEarth. The CM of the Sun - Jupiter system lies outside the
Sun.9 Where does CM of the Earth - Moon system lie and is there any
perceptible effect of that point that we experience on Earth?

The form of the new Lagrangian shows that the two body problem is
reduced to an equivalent one body problem, which is to determine the motion
of a single particle of mass µ in a central field, derivable from the potential
V(r).

For the motion of a particle moving under a central force field (analysed
from an inertial frame) space is isotropic. ∵ the mechanical properties of
the system will be unaffected by the orientation of the system vis-a-vis its
co-ordinate axes therefore the Lagrangian is also invariant under rotation. If
a coordinate system is rotated about an arbitrary axis by dθ (figure 23), then
the position vector of a point~r changes to~r + d~r given by d~r = d~θ ×~r. Each
and every vector also transforms the same way, e.g. d~̇r = d~θ ×~̇r

Say, the system has one particle and is rotated about some axis by dθ,

dL = ∑
∂L
∂xi

dxi + ∑
∂L
∂ẋi

dẋi = 0

will be invariant. Now pi =
∂L
∂ẋi

and ṗi =
∂L
∂xi

dL = ∑ ṗidxi + ∑ pidẋi = 0
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Remember Noether’s Theorem: The
connection between symmetry and
invariance of associated physical
quantities extend further;

• Homogeneity of space – conserva-
tion of linear momentum.

• Isotropy of space – angular momen-
tum.

• Homogeneity of time – energy
conservation

For a closed system, where the in-
teraction forces are derivable from
a potential, there are seven additive
integrals of motion - energy E, linear
momentum ~p and angular momentum
~L; the latter two having 3 components
each.

Figure 24: Areal velocity

Now, including all three co-ordinates.

~̇p.d~r + ~p.d~̇r = 0

~̇p.(d~θ ×~r) + ~p.(d~θ ×~̇r) = 0

d~θ.(~r× ~̇p) + d~θ.(~̇r× ~p) = 0

d~θ.
d
dt
(~r× ~p) = 0

i.e.
d
dt
(~r× ~p) = 0 =⇒ ~r× ~p = constant

=⇒ ~L = Σ ~ri × ~pi = constant (128)

Thus, if space is isotropic the angular momentum (~L) is conserved and it
is additive like ~p. If external force field has an axis of symmetry then the
Lagrangian of the system in that force field is invariant under rotation about
that axis.

Going back to the 2 body problem. Since the conservative force field,
corresponding to V(r) is always directed along~r and~L = constant, implies
that the initial value of L will be preserved throughout. Consequently, the
plane containing the vectors~r and ~p that defined~L is also defined by that
initial value of~L. The motion of the particle will thus be restricted to that
plane (determined by the initial condition) and we can write the Lagrangian
of the system as;

L =
1
2

µ(ṙ2 + r2θ̇2)−V(r) (θ is ignorable) (129)

=⇒ ṗθ =
∂L
∂θ

= 0 (130)

=⇒ pθ = µr2θ̇ = const = l (say) (131)

This is the EL EOM corresponding to the coordinate θ. In principle l can be
positive or negative and has a simple geometric interpretation.

Kepler’s Laws:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line joining planet to sun sweeps equal areas in equal intervals of time
(figure 24).

dA = 1
2 r2dθ

=⇒ dA
dt

= 1
2 r2θ̇

= l
2µ = const

dA/dt is the areal velocity. Note: This is a property of motion under a
central force field and not unique to any particular V(r).
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3. The square of a planet’s orbital period is proportional to the cube of the
length of the semi-major axis of its orbit. T2 ∝ a3; T =time period,
a =length of semi major axis.

Now, ∵ L is independent of time ( ∂L
∂t = 0) we have a conserved quantity

namely the total energy (E) of the system.

E =
µ

2
(ṙ2 + r2θ̇2) + V(r) (132)

E =
1
2

µṙ2 +
1
2

l2

µr2 + V(r) (133)

=⇒ dr
dt

= ±

√
2
µ

(
E−V − l2

µ2r2

)
(134)

t =
∫ dr√

2
µ

(
E−V − l2

µ2r2

) (135)

Equation 135, can be solved to get r(t). However, the equation of the tra-
jectory may be readily obtained otherwise. Note, dθ = dθ

dt
dt
dr dr = θ̇

ṙ dr

=⇒ θ(r) =

∫
l/r2dr√

2
µ

(
E−V − l2

2µr2

) (136)

Thus the problem can be solved in principle in terms of 4 constants:
r0, θ0, E and l.

You can’t do this!

Now both the Lagrangian and Total Energy are dependent on θ̇,

L =
µ

2
(ṙ2 + r2θ̇2)−V(r) E =

µ

2
(ṙ2 + r2θ̇2) + V(r) (137)

it is tempting to replace θ̇ with l/µr2, in the equations and obtain,

L =
µṙ2

2
+

l2

2µr2 −V(r) E =
µṙ2

2
+

l2

2µr2 + V(r) (138)

But, it is important to note that, while the replacement is justified in E
we cannot replace θ̇ in terms of r in L. Why? The Equation of Motion
d
dt (

∂L
∂q̇ )−

∂L
∂q = 0 are derived under the assumption that all coordinates and

their variations are independent, but that breaks down with l = µr2θ̇.
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U(r) = − k
r +

l2
2µr2

The second term of U(r) is occasion-
ally called the centrifugal potential

Fc = − ∂
∂r (

l2
2µr2

Fc =
l2

µr3 = µrθ̇2 = µω2r

Equation of motion and the orbit

The Euler Lagrange EOM for the coordinate r is derived as,

L =
µ

2
(ṙ2 + r2θ̇2)−V(r) (139)

∂L
∂r

= µθ̇2r− ∂V
∂r

;
∂L
∂ṙ

= µṙ (140)

d
dt

(
∂L
∂ṙ

)
− ∂L

∂r
= µr̈− µθ̇2r +

∂V
∂r

= 0 (141)

=⇒ µr̈ = −∂V
∂r

+
l2

µr3 (142)

The structure of the above equation i.e. ma = F shows that the govern-
ing equation involves only 1 variable (r) thus the problem is reduced to
effectively an 1D motion. Here, the force term (RHS of equation above) is
derivable from a modified effective potential U(r) = V(r) + l2

2µr2 , the effective

force ~Fe f f = −∇U(r) and the total energy of the system given by,

E =
µṙ2

2
+ U(r) (143)

A part of the kinetic term is now included in the potential component.

Problem 1

Our first problem deals with the inverse square law type force, V(r) =

−k/r and F(r) = − k
r2 .

V(r) = − k
r

(144)

U(r) = − k
r
+

l2

2µr2 (145)

at the minima of U(r) i.e. r = r0, U′(r0) = 0

∂V
∂r
− l2

µr3 = 0 (146)

∂V
∂r

∣∣∣∣
r0

=
l2

µr3

∣∣∣∣
r0

(147)

∂

∂r
(−k/r)

∣∣∣∣
r0

=
k
r2

0
=

l2

µr3
0

(148)

=⇒ r0 =
l2

µk
(149)

Umin = U(ro) = −
k2

2µl2 , F(ro) = − l2

µr3
o

(150)

If E = E1 ≥ 0, the motion is unbounded. However, there is a distance of
closest approach r11 to the centre of force.
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Figure 25: The 1D effective
potential plot for inverse square
force field for 2 interacting
particles. Potentials correspond-
ing to the inverse square force
and the "centrifugal force" are
also shown along with various
values of total energy of the
system and the resulting orbits
allowed.

10 at the turning points the KE is NOT
zero, only the radial component of
velocity is zero.

If E = E2 < 0, bounded motion exists. The particle of effective mass µ

moves between two limits of shortest (r21) and longest distance (r22) (see
figure 25). Now visit the expression for ṙ,

ṙ = ±

√
2
µ

(
E−V − l2

µ2r2

)

For E = E2, ṙ = 0 at the turning points, thus (r21) and (r22) are given by
the solutions to the equation 10

E−V(r)− l2

µ2r2 = 0 (151)

V = − k
r

=⇒ −2Er− 2kr + µl2 = 0 (152)

=⇒ r11 and r12 =
k±

√
k2 + 2Eµl2

−2E
(153)

To solve the equation of the trajectory we need some further juggling. We
know that

L =
1
2

µ(ṙ2 + r2θ̇2)−V(r) (154)

d
dt

(
∂L
∂ṙ

)
− ∂L

∂r
= 0 (155)

µ(r̈− rθ̇2) = −∂V
∂r

= F(r) (156)
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11 Closure of the orbit is a special
property of the inverse square force law.
Additionally, F = −kr is the other force
law that supports closed orbits.

Figure 26: Effective potential for
V(r) = −k/r3

Let, u = 1
r

du
dθ

= − 1
r2

dr
dθ

= − 1
r2

ṙ
θ̇

(157)

du
dθ

= −µ

l
ṙ (158)

d2u
dθ2 = − µ

lθ̇
r̈ = −µ2

l2 r2r̈ (159)

d2u
dθ2 + u = − µ

l2u2 F(r = 1/u) (160)

This form is particularly useful if we want to find the force F(r) if the
trajectory is already well known. For the inverse square law force F =

−k/r2 = −ku2 and the above equation becomes;

d2u
dθ2 + u =

kµ

l2 (161)

which is a equation similar to that of a simple harmonic oscillator acted
upon by a constant force and the "time" parameter replaced by θ. That the
coefficient of u on the LHS is 1 implies that the "frequency" of oscillation or
repeat is θ = 2π and by consequence the orbit is closed.11 Let’s return to the
equation of the trajectory,

θ(r) =

∫
r

r0

± l
r2 dr√

2µ
(

E−V − l2

2µr2

) + θ0

Putting u = 1
r

θ = θ0 −

∫
u

u0

du√
2µE
l2 −

2µV
l2 − u2

(162)

Assume that V = −krn+1

θ = θ0 −

∫
u

u0

du√
2µE
l2 + 2µku−(n+1)

l2 − u2
(163)

Terms in radical are of the form
√

A + Bx + Cx2. This can be integrated
if −(n + 1) = 0, 1, 2. Excluding n = −1, since that would imply V =

constant and interaction force is zero. For n = 1 the equation is also easily
integrable.

Problem 2: V(r) = − k
r3

The figure above plots the effective potential for an inverse cube attractive
potential illustrating the conditions for bounded, unbounded and circular
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Figure 27: Effective potential

orbits. Note for Umax > E > 0, the distance from the force centre cannot
exceed r1 if r ≤ r1 and if r ≥ r2 then the particle cannot come closer than r2.
Thus the region between r1 < r < r2 is forbidden. A circular orbit though is
possible for E = Umax.

Problem 3: The Simple Harmonic Potential

V(r) = −kr2, The effective potential is plotted in figure 27. For l = 0: The
motion corresponds to a straight line trajectory passing through r = 0. For
any E > 0. Motion is bounded by a rmax = 2E/k. For l 6= 0: Motion
is bounded between a minimum r1 and maximum r2 values of r. At the
Minima of U(r) the trajectory is a circle.

Planetary Motion - Kepler’s Problem

Let’s return to the case of V = −k/r, which corresponds to Newtonian
Gravity.

θ(r) =

∫
l

r2 dr√
2µ
(

E + k
r −

l2

2µr2

) + const (164)

which can be integrated with the substitution u = 1/r and under the
condition r = distance of closest approach (rmin) at θ = 0.

θ = θ0 −

∫
du√

2µE
l2 + 2µku

l2 − u2
(165)

We make use of the result that;∫
du√

A + Bx + Cx2
=

1√
−C

arccos
(
− B + 2Cx

B2 − 4AC

)
(166)

In the present case we have, A = 2µE
l2 , B = 2µk

l2 and C = −1. Inserting the
above terms and rearranging we get,

1
r
=

µk
l2

(
1 +

√
1 +

2El2

µk2 cos(θ − θ0)

)
(167)
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Figure 28: Trajectory for differ-
ent ε

Figure 29: Elliptical Orbit

assuming θ0 = 0 we get,

cos θ =
l2/µkr − 1√

1 + 2El2

µk2

(168)

Say, α =
l2

µk
and ε =

√
1 +

2El2

µk2 (169)

cos θ =
α/r− 1

ε
(170)

α

r
= 1 + ε cos θ (171)

Equation 171 is the general equation of a conic section, ε = eccentricity and
2α = latus rectum. The minimum value of r occurs when θ = 0 or cos θ is
maximum. Changing the total energy of the particle changes the nature of
the conic section by varying its eccentricity.

E > 0 =⇒ ε > 1 −→ Hyperbola (172)

E = 0 =⇒ ε = 1 −→ Parabola (173)

Umin < E < 0 =⇒ 0 < ε < 1 −→ Ellipse (174)

E = Umin =⇒ ε = 0 −→ Circle (175)

The solutions for parabola and the hyperbola correspond to unbounded
trajectories as evident from the figure 25 for E ≥ 0. For bounded orbits as in
planetary motion we know that the orbits are bounded and elliptical (E < 0 )
with major and minor axes given by,

a =
α

1− ε2 =
k

2|E| −→ decided by k and E (176)

b =
α√

1 + ε2
=

l√
2µ|E|

−→ decided by E and l (177)

thus,
b2

α
= a (178)

rmin = a− aε =
α

1 + ε
(179)

rmax = a + aε =
α

1− ε
(180)
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Figure 30: Log-log plot of τ

vs a for various planets and
other bodies of the solar system.
(wikipedia)

Remember we had proved that dA/dt = 2µ/l that allows us to calculate the
total Area swept in a complete period,∫ τ

0
dt =

2µ

l

∫ A

0
dA (181)

τ =
2µA

l
(182)

τ =
2µ

l
πab (183)

τ =
2µ

l
π

k
2|E|

1√
2µ|E|

(184)

τ2 =
µπ2k2

2l2|E|3 (185)

For an ellipse we know that,

a =
α

1− ε2 =
k

2|E| , b =
α√

1− ε2
=

l√
2µ|E|

, =⇒ b2

α
= a (186)

=⇒ τ2 =

(
2µπ

l

)2
a2b2 = a3α

(
2µπ

l

)2
(187)

Kepler’s third law: Ratio of square of τ to the cube of the semi major axis
(a) is constant for all planets. Now, the proportionality constant τ2/a3 =

4π2µ/k was concluded by Kepler to be same for all planets, see figure 30.
Now k = Gm1m2 and µ = msunm2

msun+m2
,

τ2

a3 =
4π2µ

k
=

4π2

G(msun + m2)
= C

Here, the constant C is dependent on the mass of both bodies. But, ∵ the
mass of the planets m2 << msun

τ2

a3 =
4π2µ

k
≈ 4π2

Gmsun
= C

which is independent of the mass of the planet and C is empirically observed
to be almost a constant.

The Laplace Runge-Lenz Vector

Kepler’s problem is also distinguished by an additional conserved vector.
Recall that the expressions for the angular momentum and Newton’s second
law are,

~L = ~r× ~p =~r× µ~̇r = constant

~̇p = f (r)r̂ = f (r)
~r
r
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Figure 31: The Laplace-Runge-
Lenz vector at different points
on the orbit

The cross product between the 2 above vectors give,

~̇p×~L = µ
f (r)

r
[~r×~r×~̇r]

~̇p×~L = µ
f (r)

r
[~r(~r.~̇r)− r2~̇r]

∵~r.~̇r =
1
2

d
dt
(~r.~r) = rṙ and ~̇p×~L =

d
dt
(~p× L)

=⇒ d
dt
(~p× L) = −µ f (r)r2

(
~̇r
r
−~rṙ

r2

)

= −µ f (r)r2 d
dt

(
~r
r

)
for f (r) = −k

r2 , then

d
dt
(~p×~L) = d

dt

(
µk~r

r

)
(188)

=⇒ d
dt

(
~p×~L− µk~r

r

)
= 0 (189)

=⇒ ~A = ~p×~L− µk~r
r

= (constant) (190)

Vector ~A is known as the Laplace Runge-Lenz Vector. We know that~L is
perpendicular to the plane of motion (figure 31), which gives,

~A.~L = 0

It follows from the orthogonality of ~A to~L that ~A is a fixed vector in the
plane of orbit.

~A.~r = Ar cos θ =~r.(~p×~L)− µkr

~r.(~p×~L) = ~L.(~r× ~p) = l2

~A.~r = l2 − µkr or Ar cos θ = l2 − µkr

rearranging we get
1
r
=

µk
l2

(
1 +

A
µk

cos θ

)
Remember, α

r = 1 + ε cos θ, which gives us |~A| = µkε i.e. A has the
magnitude µkε and the conservation of ~A is a second route of deriving the
orbit equation as derived above.

A = µkε =⇒ A2 = µ2k2 + 2µEl2 (191)

A is a function of k, E and l.

Points to Note

• Conserved quantities correspond to a symmetry of the problem. Which
symmetry does the conservation of the ~A correspond to?
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• The system was specified at t = 0 by 6 coordinates (3 position + 3
velocity) defining a 3 dimensional configuration space or a 6 dimensional
phase space.

• A mechanical system with d degrees of freedom can have at most 2d− 1
constants of motion, since there are 2d initial conditions and the initial
time cannot be determined by a constant of motion.

• The seven scalar quantities derived by the 3 constants or conserved
quantities E, ~A and~L are related by two equations. ~A.~L = 0 and
A2 = µ2k2 + 2µEl2, giving five independent constants of motion.
(Since the magnitude of ~A, hence the eccentricity ε of the orbit, can
be determined from the total angular momentum~L and the energy E,
only the direction of ~A is conserved independently; moreover, since ~A
must be perpendicular to~L, it contributes only one additional conserved
quantity.)

• The four constants~L and E determine the shape of the orbit. The Laplace-
Runge-Lenz vector adds one more constant that may be thought of as
fixing the orientation of the orbit in the plane perpendicular to~L.
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You can skip this section

You can skip this section

Closed Orbits: Bertrand’s Theorem

We will side step the condition for closed orbits in general but consider the
special case of Circular orbits that may exist at the minima of U(r). At
r = ro, ∂V

∂r

∣∣∣
ro
= l2

µr3 = µrθ̇2 = −F(ro) and ṙ = 0. Thus the total energy of

the system is given by,

E(ro) = V(r0) +
l2

2µr2
0

(192)

Stability of Orbits

In case the circular orbit results from a minima, then the orbit is stable, on
the other hand, if it results from a maxima then the orbit is unstable. We
know that,

U(r) = V(r) +
l2

2µr2 (193)

The condition for stability arises from,

∂2U
∂r2 =

∂2V
∂r2

∣∣∣∣
r0

+
3l2

mr4
0

(194)

∂2U
∂r2 > 0 −→ Stable (195)

∂2U
∂r2 < 0 −→ Unstable (196)

∂2V
∂r2

∣∣∣∣
r0

= − ∂F
∂r

∣∣∣∣
r0

(197)

Stability, =⇒ − ∂F
∂r

∣∣∣∣
r0

> − 3l2

mr4
0

(198)

But, F(r0) =
−l2

µr3
0

(199)

∂F
∂r

∣∣∣∣
r0

< −3F(r0)

r0
(200)

∂F/∂r
F/r

∣∣∣∣
r0

< −3 (201)

d luF
d lur

∣∣∣∣
r0

< −3 (202)

If F = − k
rn+1 =⇒ above condition given n < 2. Thus an inverse power law

potential varying slower than 1/r2 is capable of circular orbits for all r0

d2u
dθ2 + u = − µ

l2u2 F(1/u) (203)

For such circular orbits if E is sightly higher than Umin the particles motion
is still bounded and given by,

u = u0 + a cos βθ (204)
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Figure 32: Perturbing a circular
orbit. If β is rational then the
orbit finally closes on itself.

Were, a =amplitude decide by ∆E.
u = 1

r −→ Dealt pertubatively retaining 1st terms of Taylor series exp.

β2 = 3 +
r
F

(
dF
dr

)
or β2 = 3 +

dluF
dlur

(205)

Thus particle executes SHM about the stable orbit u0.
The above condition leads to F(r) = − k

r3−β2

Thus all force laws of this form with β as a rational number lead to closed
orbit if initial condition differ slightly from condition for circular orbit.

In case the deviation is more than slight such that it requires the higher
order terms of Taylor series expansion. Now if we require that even for these
longer deviation from circularity the orbit remain bounded.

It is found that for more than 1st order deviation from circlarity the orbit
can still be closed if β2 = 1 or β2 = 4. i.e.

F(r) = − k
r2 or F(r) = −kr (206)

Thus, F(r) is either inverse square law or follows Hooks law. Conditions for

Circular Orbit:
∂U
∂r

∣∣∣∣
r0

= 0 (207)

Stability:
∂2U
∂r2

∣∣∣∣
r0

> 0 (208)

∂F
∂r

F/r
< −3 (209)

Problem: Investigate the stability of circular orbits in a force field V(r) =
− k

r e−
r
a , for k, a > 0, called the screened Coulomb Potential. Now,

U(r) = V(r) +
l2

2µr2 (210)

∂U
∂r

∣∣∣∣
r0

=
k
r2

0
e−

r0
a +

k
r0a

e−
r0
a − l2

2µr3 = 0 (211)

ke−
r0
a

r0
(

1
r0

+
1
a

)
=

l2

2µr2 (212)

ke−
r0
a

r0

(
1
r0

+
1
a

)
− l2

2µr3 = 0 (213)
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From the condition for stability,

∂2U
∂r2

∣∣∣∣
r0

> 0 (214)

− k
r2

0
e−

r0
a

(
1
r0

+
1
a

)
− ke−

r0
a

r0a

(
1
r0

+
1
a

)
− ke−

r0
a

r3
0

+
3l2

µr4
0
> 0 (215)

− ke−
r0
a

r0

(
1
r2

0
+

1
ar0

+
1

r0a
+

1
a2 +

1
r2

0

)
+

3
r0

ke−
r0
a

r0

(
1
r0

+
1
a

)
> 0 (216)

− 1
r2

0
− 1

r0a
+

1
a2 < 0 (217)

−a2 − r0a + r2
0

r2
0a2

< 0 (218)

r2
0 − r0a− a2 < 0 or

(
a
r0

)2
+

a
r0
− 1 > 0 (219)

Let, z =
a
r0

z2 + z− 1 > 0 (220)

For all values of z for which z2 + z− 1 equal to and larger than zero.

z =
1
2
(
√

5− 1) ≈ 0.62 (221)

So if a
r0
≥ 0.62 and if E and l are such that it allows circular orbit.For the

case a −→ ∞, then V(r) −→ − k
r : Stability is guaranteed.



71

12 The situation is akin to Rutherford
scattering that deals with the elastic
scattering of charged particles by the
Coulomb interaction. The famous
scattering experiment of scattering of
alpha particles (He nuclei) with Au foil
was done by Hans Geiger and Ernest
Marsden in 1909, in collaboration
with Rutherford. The observations
were explained by Rutherford in 1911

that led to the development of the
Rutherford model and eventually the
Bohr model of the atom.

Scattering in a Central Force Field:

The theoretical analysis developed in the context of the Central Force mo-
tion dealt with the problem of planetary motion. But the analysis can be
equally well be applied to scattering of particles interacting via central force
fields. For example, scattering of charged particles by Coulomb interaction.
Quantum effects are much stronger in such cases though many classical
predications still remain valid and importantly the procedure for describing
the scattering phenomena remain the same.

Scattering based on collisions happen either via contact interactions e.g.
colliding billiard balls or via long range interactions e.g. scattering of α

particles by the positively charged nucleus via the repulsive forces between
them.

Scattering via a fixed Centre of Force

In the one body formulation the scattering problem is concerned with
scattering of beam of particles (e.g. α particles) by a centre of force at the
origin.12

Assumptions:

• V(r) = k/r (repulsive potential) and ~F = k/r2r̂

• F(r) −→ 0 as r −→ ∞

• A beam of constant flux density (= Intensity (I); no. of particles/unit
area) is incident from infinite distance to the force centre along a straight
line.

Figure 33: Trajectory of scat-
tered particles

• After Interaction (attractive/repulsive) the incident particle move away
and asymptotically approach a straight line trajectory.

The cross section for scattering in a given direction is given by σ(Ω)

σ(Ω)dΩ =
no. of particles scattered into solid angle dΩ

incident intensity
(222)
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Figure 34: Particles with smaller
impact parameter are scattered
to larger angles and vice versa

σ(Ω) has the dimension of area and thus justifying its nomenclature as
differential scattering Cross-Section. Now, the total solid angle subtended at
the origin by a ring of scattered particles between angles Θ and Θ + dΘ is
dΩ = 2π sin ΘdΘ, and the degree of scattering of a particle is determined
by the parameters lo (initial angular momentum) and Eo (initial energy).
Here, the initial parameters of any incident particle are the initial velocity
(vo) and the impact parameter (S), which defines the angular momentum
and energy.

lo = mvoS and E =
1
2

mv2
0 (223)

=⇒ v0 =

√
2E
m

and lo = S
√

2mE (224)

Thus, once E and S are determined, the trajectory of the particle is fixed
along with the scattering angle.The number of particles scattered into
the angle Θ −→ Θ + dΘ are the number of particles incident between
S −→ S + dS, as shown in figure 33. Therefore per unit time,

2πS|dS| × I = 2π sin Θ|dΘ| × σ(Θ)I (225)

σ(Θ) =
S

sinΘ

∣∣∣∣ dS
dΘ

∣∣∣∣ (226)

The absolute signs are introduced since particles with smaller impact
parameter are scattered by larger angles and vice versa. In reality the force
centre is a fixed nucleus of charge −Z1e and the incident particle has charge
−Z2e i.e. for a beam of α particles Z2 = 2. The interaction force is then
given by,

F =
1

4πεo

Z1Z2e2

r2 =
k
r2

with k = Z1Z2e2

4πεo
. Energy of incident particles E > 0, the trajectories will be

hyperbolic.

with ε =

√
1 +

2El2

mk2 =

√
1 +

2El2

m

(
4πεo

Z1Z2e2

)2
(227)

∵ l = S
√

2mE, ε =

√
1 +

(
8πεoES
Z1Z2e2

)2
(228)

As derived earlier, the equation of the trajectory is a conic section with the
general equation α

r = 1 + ε cos θ, where α = µl/k and the angle θ is
measured with respect to the axis defined by the line joining the point of
closest approach, rmin to the origin i.e. the force centre, as shown by the
red line in figure 35. The angle for the incoming and outgoing asymptotes
(green lines in figure 35) Ψ are determined by r → ∞ along the incoming
and outgoing directions of the α particle. Thus for r→ ∞
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Figure 35: Scattering Angle
(trajectory is symmetric about
the red line)

α

r(→ ∞)
= 1 + ε cos Θ(→ Ψ) =⇒ cos Ψ = −1

ε
(229)

cos
π −Θ

2
= sin

Θ
2

= −1
ε

=⇒ cot2 Θ
2

= ε2 − 1 (230)

cot2 Θ
2

=

(
8πεoES
Z1Z2e2

)2
(231)

S =
Z1Z2e2

8πεoE
cot2 Θ

2
(232)

σ(Θ) =
S

sin Θ

∣∣∣∣ dS
dΘ

∣∣∣∣ = 1
4

(
k

2E

)2
csc4 Θ

2
(233)

=⇒ σ(θ) ∝ csc4 Θ
2

(234)

and σ(Θ) ∝ k2 (235)

Note that since σ(Θ) ∝ k2, the above result is same for attractive or
repulsive potential, even though the actual trajectories will be different. This
is the main finding of the Rutherford’s scattering formula albeit in the CM
frame, where the problem is reduced to an one body problem. Quantum
Mechanical calculations in the non-relativistic limits yields exactly the same
result for scattering cross-section.

What is useful is the quantity σT , the integral of σ(Ω) in all directions,
known as the total scattering cross section.

σT =

∫
4π

σ(Ω)dΩ = 2π

∫ π

0
σ(Θ) sin ΘdΘ (236)

and in the differential form, σ(Ω) gives the probability of scattering at a
certain angle Θ. The σT for the coulomb field = ∞ (Why?) This is because
the electrostatic force (1/r2) is infinite range and every trajectory, even for
very large values of the impact parameter suffer some deflection. It can be
shown that for force fields that decays faster than 1/r2 or are cut-off at finite
distances results in a finite value of σT . For the coulomb field, such effects
are provided by screening effects of other charges.
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Scattering in Laboratory Coordinates

Above calculation of σ(Θ) and the analysis was done with a fixed centre of
force, which is akin to observing the phenomena from the CM frame as a one
body problem. But how does the process appear in the lab frame where both
the particles of masses m1 and m2 are allowed to move? We assume that
initially m2 was at rest and m1 was incident with a velocity vo.

The scattering angle of m1, measured in the lab is β whereas we calcu-
lated σ in terms of Θ. Note: β = Θ, if the m2 is always at rest throughout
the scattering process.
Say,

• ~r1 and ~v1 = for particle m1 after scattering. (Lab Frame)

• ~r′1 and ~v′1 = for m1 after scattering. (CM Frame)

• ~R and ~V = for the CM of system. (Lab Frame)

• ~V is a constant with respect to the Lab Frame.

Therefore at any instant we know,

~r1 = ~R + ~r′1 and ~v1 = ~V + ~v′1 (237)

m1~v0 = (m1 + m2)~V =⇒ ~V =
µ

m2
~v0 (238)

~v1 =
µ

m2
~v0 + ~v′1 (239)

~v′1 sin Θ = v1 sin β (240)

v1 cos β = v′1 cos Θ + V (241)

taking the ratio of the above 2 tan β =
sin Θ

cos Θ + ρ
, ρ =

µv0

m2v′1
(242)

alternatively cos β =
cos Θ + ρ√

1 + 2ρ cos Θ + ρ2
(243)

using, v2
1 = v′21 + V2 + 2Vv′21 cos(Θ) (244)

If v is the relative speed of the particles after collision.

v′1 =
m2

m1 + m2
v =

µ

m1
v
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Note that the relative speed before collision was vo and after collision is v.
Together that gives us,

ρ =
m1

m2

v0

v
(245)

Now if the collision is elastic vo = v and ρ = m1/m2. Though σ(β) and
σ(Θ) are different we note that the number of particles scattered into a
given element of solid angle must be the same irrespective of the measure-
ment angle.

2πTσ(Θ) sin Θ|dΘ| = 2πTσ′(β) sin β|dβ| (246)

σ′(β) = σ(Θ)
sin Θ
sin β

∣∣∣∣dΘ
dβ

∣∣∣∣ = σ(Θ)
d cos Θ
d cos β

(247)

Here, σ′(β) is the differential Scattering Cross-Section in terms of the angle
β measured in the lab frame.

σ′(β) = σ(Θ)
(1 + 2ρ cos Θ + ρ2)3/2

1 + ρ cos Θ
(248)

for elastic collision v0 = v and ρ = m1
m2

, and in the case of equal masses
ρ = 1

cos β =
cos Θ + 1√
2
√

1 + cos Θ
(249)

=

√
1 + cos Θ

2
= cos

Θ
2

(250)

=⇒ β =
Θ
2

(251)

For equal masses β ≤ π
2 for Θ ≤ π
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Homework

Central Force Motion

1. What is the slope of the line in figure 30 and the intercept? Should those
values be different for the various planets of the solar system?

2. Compute the ratio of the maximum and minimum speed of the Earth
around the Sun given that the eccentricity of Earth’s orbit about the Sun
is 0.0167.

3. The equation of the path of a particle moving in a central force field with
potential V(r) = −k/r is given by

θ(r) =

∫
l/r2dr√

2
µ

(
E−V − l2

2µr2

)
Show that this can be integrated to give the equation of a conic section
given by;

cos θ =
l2/µkr − 1√

1 + 2El2

µk2

The origin and axes are so chosen that θ = 0 at the point of closest
approach.

4. The Halley’s comet is in an elliptical orbit around the Sun whose mass is
2× 1030 kg. The eccentricity of the comet’s orbit is 0.967, and the period is
76 years. Using these data, determine the closest and the farthest distance
of Halley’s comet from the Sun. Determine the speed of the comet when it
is closest to the Sun?

5. For an artificial satellite in orbit around the Earth in an elliptical orbit
the distances of closest and farthest approach are 10,000 km and 6,000
km, respectively. The mass of the satellite is 2000 kg. Calculate the
eccentricity, energy, angular momentum, and minimum and maximum
speeds of the satellite.

6. Two particles moving under the influence of their mutual gravitational
attraction describe circular orbits about one another with a period τ. If
they are suddenly stopped an allowed to gravitate towards each other,
show that they will collide in time t = τ/4

√
2.

7. Investigate the motion of a particle repelled by a force centre according
to the law F(r) = kr, k > 0. Demonstrate that the orbit can only be
hyperbolic.
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Trasferring between circular
orbits

8. A geostationary satellite is one whose position in the sky remains the
same for an observer on the Earth. These satellites are placed above
Earth’s equator. Compute the radius of the orbit of a geostationary
satellite.

9. A uniform distribution of dust in the solar system adds to the gravita-
tional attraction of the Sun on a planet an additional force ~F = −mC~r,
where m is the mass of the planet, C is a constant proportional to the
gravitational constant and the density of the dust, and r is the radius
vector from the Sun to the planet (both considered as points). This addi-
tional force is very small compared to the direct Sun-planet gravitational
force. Plot the effective potential including the modified force field and
the condition for a circular orbit. What would be the time period of the
circular orbit?

10. A particle moves under a central force field F(r) = −k/rn. Comment
on the value of n if the resulting orbit is circular and passes through the
centre of force.

11. A particle moves in an elliptical orbit in an attractive inverse square
law central force field. If the ratio of the maximum angular velocity to
minimum angular velocity is n, show that the eccentricity of the orbit is
given by;

ε =

√
n− 1√
n + 1

12. Prove that among all the Kepler orbits of the same angular momentum,
the circle has the least energy.

13. A particle moving in a central potential follows a trajectory given by rφ

= const. Sketch the trajectory of the particle and compute the potential of
the particle as a function of r.

Advanced Problems

14. A space vehicle of mass 2000 kg is orbiting around the Earth in a circular
orbit with the radius of orbit as 2Re. We wish to transfer the vehicle to
a circular orbit of radius 4Re. One of the schemes to transfer the vehicle
is to use a semi- elliptical orbit as shown in the figure. What velocity
changes are required at the points of intersection, A and B? What is the
change in energy of the system in the two configurations?

15. Determine whether a particle moving on the inside surface of a cone
under the influence of gravity can have a stable circular orbit.

16. Show that the motion of a particle in a central force field given by F(r) =
−k1/r2 − k2/r3, where (k1, k2 > 0) is described by a precessing ellipse.
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17. What would be the shape of the orbit if the gravitational potential had a
small correction that varies inversely with the square of distance? Which
laws of planetary motion would still be valid? Goldstein Ch:3 problem 21

18. The Yukawa potential modifies the standard Coulomb potential by short-
ening its range and is given by V(r) = (V0r0/r)e−r/r0 . Find a particles
trajectory in a bound orbit of the Yukawa potential to a first order in
r/r0.

19. The restricted three-body problem consists of two masses in circular
orbits about each other and a third body of much smaller mass whose
effect on the two larger bodies can be neglected. Define an effective
potential V(x, y) for this problem where the x axis is the line of the
two larger masses. Sketch the function V(x, 0) and show that there are
two "valleys" (points of stable equilibrium) corresponding to the two
masses. Also show that there are three "hills" (three points of unstable
equilibrium). Goldstein Ch:3 problem 36

Problems on Scattering

20. From the α particle scattering problem how would you estimate the size
of the fixed scatterer i.e. the size of the Au nucleus in the Rutherford
scattering experiment?



Small Oscillations

Oscillators appear almost everywhere in physics, starting from mechanics
to string theory. It is one class of problems that can be solved exactly and
leads to simple solutions that may be used to understand a wide variety of
physical systems. Here we will look at oscillators with more than one degree
of freedom. A simple harmonic oscillator with only one degree of freedom
is familiar to everyone. We consider conservative systems in which the
potential energy is function of only the generalised coordinates, q1, ..., qn and
does not involve time explicitly, i.e. time dependent constraints are excluded.
When the system is in equilibrium, the generalized forces vanish;

Qi = −(
∂V
∂qi

)0 = 0 (252)

The potential energy has an extremum at q01, q02, ..., q0n. If the system was
initially at equilibrium, with zero initial velocities then it will continue to
be in equilibrium. An equilibrium is stable if small disturbances do not lead
to unbounded motion, it is unstable if small disturbances lead to unbounded
motion and neutral if the equilibrium remains unchanged. Consider 3
spheres (A) a homogeneous sphere in which the centre of mass (CM) co-
incides with the geometric centre of the sphere (B) in which the CM lies
vertically below the geometric centre and (C) the CM lies vertically above
the geometric centre. These sphere rests on a surface with non-zero friction
and are initially at equilibrium, neutral, stable and unstable, respectively. If
each of the spheres are slightly displaced from their equilibrium they would
behave very differently. (A) would not be perturbed at all (B) would return
to its original position and continue to execute oscillatory motion and (C)
would roll over! Their reactions are commensurate with the nature of their
respective equilibria (A) neutral (B) stable (C) unstable.

We are interested here in the motion of a system close to its stable equilib-
rium. Let the generalized coordinates deviate from the equilibrium positions
by a small amount, ηi,

qi = q0i + ηi (253)

Taylor expanding the potential about q0i we get

V(qi) = V(qi0) + (
∂V
∂qi

)0ηi + (
∂2V

∂qi∂qj
)0ηiηj + .... (254)
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by definition ( ∂2V
∂qi∂qj

)0 = Vij = Vji

(symmetric).

Mij may be functions of qi0.

where the summation convention has been used. The terms linear in ηi

vanish due to the equilibrium condition. We can choose the zero of our
energy scale at V(q01, q02, ...q0n) so that we get

V(qi) ' (
∂2V

∂qi∂qj
)0ηiηj (255)

If the potential is independent of certain coordinates then the equilibrium
is neutral along those coordinates. Any point along those directions is an
equilibrium. The Vijs might also vanish at some points if V is linear in
qi. These cases need special treatment in the discussion below. Since the
potential is conservative and independent of time, we know that the kinetic
energy can also be written as a homogenous polynomial of order 2 in q̇i, then
the Lagrangian becomes;

L =
1
2
(Mijη̇iη̇j −Vijηiηj) (256)

where The L then gives back the n EOMs.

Mijη̈j + Vijηj = 0 (257)

All n coordinates appear in each of the above n differential equations and
these equations have to be solved simultaneously. In almost all cases of
interest, the cross terms in the kinetic energy matrix are zero so that;

L =
1
2
(Miiη̇

2
i −Vijηiηj) (258)

and the EOM corresponding to ηi are;

Miiη̈i + Vijηj = 0 (259)

The equations of motion are linear differential equations with constant
coefficients. We try an oscillatory solution:

ηi = Caie−iωt (260)

The ai are a complex amplitude and C is a scale factor introduced for conve-
nience. Substituting in the EOM we get;

Vijaj −ω2Mijaj = 0 (261)

So we get n linear homogenous algebraic equations in ai which have a
solution if the determinant of the coefficient matrix is zero; i.e.

|V−ω2M| = 0 (262)

Here Vij and Mij have been written as matrices V and M. This determinant
is a nth order equation in ω2 and the n solutions provide the right frequen-
cies for which Caie−iωt is the right solution. For these values of ω2 we
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Figure 36: Two carts attached
to fixed walls by the springs
label k1 and k3, and to each
other by k2. The carts’ positions
x1 and x2 are measured from
their respective equilibrium
positions.
it is simplest to assume that when
the two carts are at their equilibrium
positions the three springs are neither
stretched nor compressed i.e.their
lengths are equal to their natural, un-
stretched lengths. However, depending
on the distance between the two walls,
it could be that all three springs are
compressed or all three are stretched.
Fortunately, as you can easily check,
none of the results are affected by these
possibilities.

can find solution for the ais.The equation also represents a type eigenvalue
equation.

Va = λMa, λ = ω2 (263)

Importantly, we can show that;

1. All λs and hence ω2 are real

2. The eigenvectors a corresponding to different λ (ω2) are real and are
orthogonal in a sense

3. the matrix A made of all the vectors a will diagonalize both M and V

4. M will be diagonalised to the unit matrix i.e. ÃMA = 1

5. V is diagonalised to a diagonal matrix whose elements are all the λs i.e.
ÃVA = λ.

The matrix Ã is the transpose of the matrix A. The transformation of the
type ÃBA is called a congruence transformation and becomes a similarity
transformation when A is orthogonal.

Problem 1

Examine the two carts of figure 36, the EOMs of the 2 carts are given by;

mẍ1 = −(k1 + k2)x1 + k2x2 (264)

mẍ2 = k2x1 − (k2 + k3)x2 (265)

Here we define 3 matrices

x =

(
x1

x2

)
, M =

(
m1 0
0 m2

)
, V =

(
(k1 + k2) −k2

−k2 (k2 + k3)

)

Now the EOMs can be written in the beautifully compact matrix form;

Mẍ = −Vx (266)

Suppose now that the two masses are equal, m1 = m2 = m, and similarly
the three spring constants, k1 = k2 = k3 = k. In this case, the matrices M
and V defined above reduce to;

M =

(
m 0
0 m

)
, V =

(
2k −k
−k 2k)

)

The eigenvalue equation then becomes;

(V−ω2M)a =

(
2k−ω2m −k
−k 2k−ω2m

)
(267)
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Notice that the first one, ω1, is precisely
the frequency of a single mass m on a
single spring k.

Figure 37: Mode 1: 2 carts os-
cillate sinusoidally, with equal
amplitudes and in phase.

and its determinant must be set to zero to determine the non-trivial solu-
tions;

|V−ω2M| = det

(
2k−ω2m −k
−k 2k−ω2m

)
= 0 (268)

which gives us two normal frequencies or the frequencies of the two normal
modes that the dynamics of the system support;

ω1 =

√
k
m

ω2 =

√
3k
m

(269)

These two normal frequencies are the frequencies at which the system of carts
can oscillate in purely sinusoidal motion. Now the actual motion is given
by the column of real numbers x(t) = Re z(t) where the complex column z(t)
= Caeiωt and a is made up of two real numbers,

a =

(
a1

a2

)

which must satisfy the eigenvalue equation

(V−ω2M)a = 0 (270)

Now that we know the possible normal frequencies, we must solve this
equation for the vector a for each normal frequency in turn. The sinusoidal
motion corresponding to each of the normal frequencies are called the normal
modes.

For ω = ω1 =
√

k/m, the matrix (V - ω2 M) becomes;

(V−ω2
1M) =

(
k −k
−k k

)

This matrix has determinant 0, as it should. Therefore, for this case, the
eigenvalue equation reads;(

1 −1
−1 1

)(
a1

a2

)
= 0

which is equivalent to the two equations al − a2 = 0 and −a1 + a2 = 0.
Both these equations are actually identical and either one implies that
al = a2 = e−iδ. The complex column z(t) is therefore given as;

z(t) = C

(
a1

a2

)
eiω1t =

(
C
C

)
ei(ω1t−δ)

and the corresponding actual motion is given by the real column x(t) =
Rez(t) or

x(t) =

(
x1

x2

)
=

(
C
C

)
cos(ω1t− δ)
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Figure 38: Mode 2: 2 carts os-
cillate sinusoidally, with equal
amplitudes and out of phase.

We see that in the first normal mode the two carts oscillate in phase
with each other and with the same amplitude C, as shown in figure 37.
Since xi(t) = x2(t), the middle spring is never stretched or compressed
during the oscillations. For the first normal mode, the middle spring is
actually irrelevant, and each cart oscillates just as if it were attached to a
single spring and has a frequency ω1 =

√
k/m, same as for a single cart on

a single spring.
For ω = ω2 =

√
3k/m, the matrix (V - ω2 M) becomes;

(V−ω2
2M) =

(
−k −k
−k −k

)
This matrix has determinant 0, as it should. Therefore, for this case, the
eigenvalue equation reads; (

1 1
1 1

)(
a1

a2

)
= 0

which gives us al + a2 = 0 or a1 = −a2 = e−iδ. The complex column z(t) is
therefore given as;

z(t) = C

(
a1

a2

)
eiω2t =

(
C
−C

)
ei(ω2t−δ)

and the corresponding actual motion is given by the real column x(t) =
Rez(t) or

x(t) =

(
x1

x2

)
=

(
C
−C

)
cos(ω2t− δ)

We see that in the second normal mode the two carts oscillate out of phase
with each other again with the same amplitude C, as shown in figure 38.
Since xi(t) = −x2(t), when the first cart is displaced to the left the second
cart will be displaced to the right and vice versa. Again when the outer
springs are extended by a certain length the middle spring is compressed
by twice the amount and vice versa. For the second normal mode, each
cart is acted upon by force equivalent to 3 × a single spring thus each cart
oscillates just as if it were attached to a single spring of force constant 3k
and has a frequency ω2 =

√
3k/m.

Both the normal mode solutions;

x(t) = C1

(
1
1

)
cos(ω1t− δ1) x(t) = C2

(
1
−1

)
cos(ω2t− δ2)

satisfy the EOM Mẍ = −Vx for any values of the four real constants
C1, δ1, C2, δ2. Because the equation of motion is linear and homogeneous, the
sum of these two solutions is also a solution;

x(t) = C1

(
1
1

)
cos(ω1t− δ1) + C2

(
1
−1

)
cos(ω2t− δ2) (271)
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This the general solution to the 2 second order differential equations with its
four arbitrary constants. This general solution is rather difficult to visualize
and describe. The motion of each cart is a mix of the two normal frequencies
and the oscillatory pattern never repeats itself.

Remember the 2 original coupled EOMs

mẍ1 = −(k1 + k2)x1 + k2x2

mẍ2 = k2x1 − (k2 + k3)x2

The coupling terms reflect the physical reality that the two carts are coupled
to each other and that one cart cannot move without the other. It is possible
to introduce alternative, so-called normal coordinates which, although
less physically meaningful, they have the convenient property the EOMs
decouple! This statement is true for any system of coupled oscillators, but is
especially easy to see in the present case of two equal masses joined by three
identical springs. In place of the coordinates x1 and x2, we can characterize
the positions of the two carts by the two normal coordinates;

ξ1 =
1
2
(x1 + x2) (272)

ξ2 =
1
2
(x1 − x2) (273)

This is akin to a coordinate transformation given by;(
ξ1

ξ2

)
=

1
2

(
1 1
1 −1

)(
x1

x2

)
(274)

Show that in terms of the new coordinates ξ1 and ξ2 the EOMs in the
present case of two equal masses joined by three identical springs transform
to;

mξ̈1 = −kξ1 (275)

mξ̈2 = −3kξ2 (276)

which in the matrix notation reads;(
m 0
0 m

)(
ξ̈1

ξ̈2

)
= −

(
k 0
0 3k

)(
ξ1

ξ2

)
The transformation from (x1, x2) → (ξ1, ξ2) seems to have diagonalised
the matrix V. Indeed if we look carefully at the transformation matrix T in
equation 135 is composed of the 2 eigenvectors corresponding to the 2 eigen
modes or normal modes of oscillation of the carts.

T =

(
1 1
1 −1

)
∝

(
a11 a12

a21 a22

)
For the aij, the subscript i corresponds to the eigen (normal) mode index

and j denotes the coordinate. Recall the statements;
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1. the matrix A made of all the eigenvectors ai will diagonalize both M and
V

2. M will be diagonalised to the unit matrix i.e. ÃMA = 1

3. V is diagonalised to a diagonal matrix whose elements are all the λs i.e.
ÃVA = λ.

Does the above transformation matrix satisfy the points 2 and 3 above? Lets
see how we go about doing it. Recall the following that gives the general
solution to the problem.

x(t) = C1

(
1
1

)
cos(ω1t− δ1) + C2

(
1
−1

)
cos(ω2t− δ2) (277)

And we demand that ãiMai =1 and by consequence ÃMA = 1, which is
essentially a normalization. For the two eigenmodes we get;

ã1Ma1 = A2
1

(
1 1

)(m 0
0 m

)(
1
1

)
= 1

ã2Ma2 = A2
2

(
1 −1

)(m 0
0 m

)(
1
−1

)
= 1

where A1 and A2 may be interpreted as normalization constants. The
above equations gives us A1 = A2 = 1/

√
2m and the final form of the

transformation matrix A as;

A =
1√
2m

(
1 1
1 −1

)
(278)

Thus the transformation;

ÃMA =
1

2m

(
1 1
1 −1

)(
m 0
0 m

)(
1 1
1 −1

)

=
1

2m

(
1 1
1 −1

)(
m m
m −m

)
=

(
1 0
0 1

)
What about the quantity ÃVA?

ÃVA =
1

2m

(
1 1
1 −1

)(
2k −k
−k 2k

)(
1 1
1 −1

)

=
1

2m

(
1 1
1 −1

)(
k 3k
k −3k

)
=

(
k/m 0

0 3k/m

)

=

(
ω2

1 0
0 ω2

2

)
Thus the congruence transformation diagonalizes the V matrix and yields

the square of the eigenfrequencies of the problem. However, note that |A| 6=
±1.



86

Figure 39: A double pendulum.

Note: The exact expression the kinetic
energy term was a transcendental func-
tion of the coordinates φi and velocities
φ̇i ; the small-angle approximation re-
duced this to a homogeneous quadratic
function of the two velocities only.

Problem 2

The Double Pendulum: Consider a double pendulum, comprising a mass m1

suspended by a massless string of length l1 from a fixed point, and a second
mass m2 suspended by a string of length l2 from m1, as shown in figure 39.
The Lagrangian of the system is given by;

L =
m1 + m2

2
l2
1 φ̇2

1 + m2l1l2φ̇1φ̇2 cos(φ1 − φ2) +
m2

2
l2φ̇2

2

−[(m1 + m2)gl1(1− cos φ1) + m2gl2(1− cos φ2)]

We can derive the EOMs via the Euler Lagrange equations but are too
complicated to be solved analytically and gain any useful physical insight.
So we make a couple of assumptions and approximations. Approximation 1:
Just like the case of a simple pendulum we’ll restrict our interest to the case
of small oscillations i.e. the φ’s are small. This allows us to rewrite L as;

L =
m1 + m2

2
l2
1 φ̇2

1 + m2l1l2φ̇1φ̇2 +
m2

2
l2φ̇2

2

−[(m1 + m2)gl1φ2
1 + m2gl2φ2

2 ]

where we have made the following approximations, cos(φ1 − φ2) ' 1 and
(1− cos φi) ' φ2

i Now the EOMs of the 2 generalized coordinates can be
derived as;

(m1 + m2)l2
1 φ̈1 + m2l1l2φ̈2 = ¯(m1 + m2)gl1φ1 (279)

m2l1l2φ̈1 + m2l2
2 φ̈2 = ¯m2gl2φ2 (280)

and the EOMs in the matrix format Mφ̈ = −Vφ reads;(
(m1 + m2)l2

1 m2l1l2
m2l1l2 m2l2

2

)(
φ̈1

φ̈2

)
= −

(
(m1 + m2)gl1 0

0 m2gl2

)(
φ1

φ2

)

To obtain the non-trivial solutions we have to demand that;

|V−ω2M| = det

(
(m1 + m2)(gl1 −ω2l2

1) m2l1l2
m2l1l2 m2(gl2 − l2

2)

)
= 0

which yields a rather complicated quadriatic equation in ω2. To simplify
things further we now make an assumption that the masses and lengths are
equal i.e. m1 = m2 = m, l1 = l2 = l and define ω0 =

√
g/l. Now the

above determinant reads;

|V−ω2M| = det

(
2(ω2

0 −ω2) −ω2

−ω2 2(ω2
0 −ω2)

)
= 0

which gives us the two eigenfrequencies

ω2
1 = (2−

√
2)ω2

0 (281)

ω2
2 = (2 +

√
2)ω2

0 (282)
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As before we now consider the eigenvalue equations (V−ω2M)a = 0 for the
two cases to determine the eigenvectors.

Case I: ω = ω1

(V−ω2
1M)a = ml2ω2

0(
√

2− 1)

(
2 −

√
2

−
√

2 1

)(
a1

a2

)
= 0

=⇒ a2 =
√

2a1 i.e. the two bobs oscillate in-phase with the amplitude of
the second pendulum

√
2× that of the first.

Case II: ω = ω2

(V−ω2
2M)a = ml2ω2

0(
√

2 + 1)

(
2
√

2√
2 1

)(
a1

a2

)
= 0

=⇒ a2 = −
√

2a1 i.e. the two bobs oscillate out of phase, with the
amplitude of the second pendulum

√
2× that of the first. And the general

solution to the motion of this special double pendulum is;

φ(t) = C1

(
1√
2

)
cos(ω1t− δ1) + C2

(
1
−
√

2

)
cos(ω2t− δ2) (283)

Again demanding that;

ã1Ma1 = A2
1ml2

(
1
√

2
)(2 1

1 1

)(
1√
2

)
= 1

and

ã2Ma2 = A2
2ml2

(
1 −

√
2
)(2 1

1 1

)(
1
−
√

2

)
= 1

we get the values A2
1 = 1/(2ml2(2 +

√
2)) and A2

2 = 1/(2ml2(2−
√

2)).
Determine the transformation matrix A and show that the congruence
transformation the M matrix to a unity matrix.
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Figure 40: A cube, of side 2b
and center C, is placed on a
fixed horizontal cylinder of
radius r and center 0. It is orig-
inally put so that C is centered
above 0, but it can roll from
side to side without slipping.

Figure 41: (a) and (b)

Figure 42: 2 carts and 2 springs

Homework

1. A hard rubber cylinder of radius r is held fixed with its axis horizontal,
and a wooden cube of side 2b is balanced on top of the cylinder, with its
center vertically above the cylinder’s axis and four of its sides parallel
to the axis (figure 40) The cube cannot slip on the rubber of the cylinder,
but it can of course rock from side to side. By examining the cube’s
potential energy, find out if the equilibrium with the cube centered above
the cylinder is stable or unstable. If stable find the frequency of small
oscillations of the cube.

2. Consider a simple harmonic oscillator with period r. Let < f > denote
the average value of any variable f (t), averaged over one complete cycle:

< f >=
1
τ

∫ τ

0
f (t)dt (284)

Prove that <T> = <U> = E/2 where E is the total energy of the oscillator.
[Hint: Start by proving the more general, and extremely useful, results
that < sin(ωt− δ) >=< cos(ωt− δ) >= 1/2. Explain why these
two results are almost obvious, then prove them by using trig identities to
rewrite sin2 θ and cos2 θ in terms of cos(2θ).

3. A spring of force constant k and zero unextended length is anchored at
a point at one end and attached to a point mass m at the other end, as
shown in the figures 41 (a) and (b). In (a) the point mass is constrained
to move along a horizontal line at a perpendicular distance l from the
anchoring point and in (b) the point mass is constrained to move along
the arc of a circle of radius a. The distance between the anchor point
and the centre of circle being l + a. Show that the frequency of small
oscillation of the masses in the 2 cases are given by (a) ω =

√
k/m and

(b) ω =
√

k(a + l)/ma.

4. The potential energy of a one-dimensional system with a point mass m at
a distance r from the origin is,

U(r) = U0(
r
R
+ λ2 R

r
) (285)

for 0 < r < ∞ , with U0, R, and λ all positive constants. Find the
equilibrium position r0. Let x be the distance from equilibrium and show
that, for small x, the PE has the form U = const + kx2. What is the
angular frequency of small oscillations?

5. (a) Find the normal frequencies for the two carts shown in figure 42
Assuming that m1 = m2 and k1 = k2. (b) Find and describe the motion
for each of the normal modes in turn.
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Figure 43: Triatomic molecule

6. Two masses m1 and m2 are connected by a spring. When m1 is held fixed,
m2 is observed to oscillate with a frequency ω. Find the frequency of
linear oscillations when m2 is held fixed and when both masses are free to
move. You can neglect the effect of gravity.

7. Find the normal frequencies of a linear triatomic molecule which is mod-
elled by 2 equal masses (m) connected to a central mass (M) by two
identical springs of force constant k (figure 43). Show that the eigenfre-

quencies are given by ω1 = 0, ω2 =
√

k
m , ω3 =

√
k
m (1 + 2m

M ). Analyse
the motion and discuss the physical nature of the three eigenmodes.

8. A pendulum consists of a mass M at the end of a massless string of
length D. It is free to swing in one direction only, so has one degree of
freedom, θ. The frequency of small oscillations is ω0 =

√
g/D, with g

being the acceleration of gravity. Now suppose the string is very slowly
shortened by some external agent. The length D varies only a little
during the oscillation period. You can assume that θ(t) = A cos ωt.
where A , ω vary slowly with time but can be treated as constants over
times of the order of a single period of the swinging pendulum. D(t)is a
given function of the time and is not a dynamical variable. Treating θ as
small;
(a) Find the kinetic and potential energies. Find the Lagrangian and
prove that the equation of motion is

θ̈ +
2Ḋ
D

θ̇ + ω2
0θ = 0

(b) Notice that the total energy of the pendulum E = T + V is no longer
constant in time because there is a term proportional to θ̇ in the EOM.
The total energy also does not equal H = θ̇ ∂L

∂θ̇
− L. Explain why this fact

could be deduced from the form of T. Show that E = H + mḊ2.
(c) Find dE

dt from dH
dt . Hint: Use the fact that L contains the time explic-

itly.
(d) The energy stored in the pendulum oscillations Epend = m

2 (D2θ̇2 +

Dgθ2) ' m
2 DgA2, where A is the amplitude of oscillations and θ̇ '

−ωA sin ωt. E > Epend because, even if the pendulum doesn’t swing,
kinetic and potential energy both change. Part of your formula for dE

dt

vanishes if A = 0. This must be
dEpend

dt . Find it,and average it over one

oscillation to get
dEpend

dt . Here the "bar" means an average over one
complete period. Prove that

1
Epend

dEpend

dt
= −1

2
Ḋ
D

Use this formula to show that, for small oscillations, the energy stored
in the oscillations of the pendulum increases as 1√

D
, no matter how we

change D as long as we do it sufficiently slowly.
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e) Show that the amplitude A of oscillations is proportional to D
3
4 . The

importance of this result is that
Epend

ω is a constant for any arbitrary
variation of the pendulum length D(t), as long as it varies slowly enough
so that we can assume A, ω are constant for at least one period. Such
a quantity, which remains constant for sufficiently slow variations in
a parameter of the problem, is called an adiabatic invariant. This result
played an important role in the early history of quantum theory. What
you have shown applies to any system near its stable equilibrium point
and not only to a pendulum.



William Rowan Hamilton (1805-1865)
was the astronomer royal for Eire.
He worked extensively on planetary
motion and on ray optics, for designing
telescopes. Amazingly he found
great similarity in the mathematical
formulation of the laws of mechanics
and ray optics. Indeed he wondered
whether the laws of mechanics were
the short wavelength approximation
of some more general mechanical
principles. see wikipedia

The transform is named after the
French mathematician Adrien-Marie
Legendre (1752–1833), who is also
noted for establishing the modern
notation for partial derivatives, which
was subsequently adopted by Jacobi.

In thermodynamics we can transform
between the Helmholtz and Gibbs free
energies by using Legendre transforms.
The Helmholtz free energy is often the
most useful thermodynamic potential
when temperature and volume are
held constant, while the Gibbs energy
is often the most useful when temper-
ature and pressure are held constant.
Similarly, internal energy (U(S, V, N))
and enthalpy (H(S, P, N)) can be trans-
formed from one to the other. The latter
gaining significance in problems where
pressure is held constant.
see Legendre Transforms for Dummies
and Legendre Transforms

Hamiltonian Formalism
Canonical Transformations
& Poisson Brackets

The Lagrangian and the Hamiltonian formalisms give two distinct yet
interjected parts of analytical mechanics. The Hamiltonian formalism
provides an elegant geometric picture of dynamical systems, and importantly
serves as the starting point for quantum mechanics. The Hamiltonian
formulation introduces a new variable, the canonically conjugate momentum
p = ∂L

∂q̇ . p though conjugate to q is also dynamically independent from q
unlike the pair q and q̇, used in the Lagrangian formulation which are not
functionally independent but related by the time derivative i.e. q̇ = dq

dt . Use
of q and p also leads to equations of motion that are symmetric about the
two variables. Earlier we have introduced the configuration space in which
we used the concept of variation to identify the extremal path that minimized
the action and yielded the correct progression of q(t) in time. Here on it will
be convenient to use the more general 2n dimensional phase space, composed
of all the coordinates q(t) and the momenta p(t), which are defined for the
general case of n DoF by;

pi =
∂L
∂q̇i

i = 1, 2, 3....n. (286)

by the definition p is a function of q and q̇, which are themselves functions
of the time via the equations of motion. The concept of canonical momentum
is the key concept in Hamilton’s theory and loses its familiar definition
~p = m~v. Which may be incidentally true in many simple cases, but no
longer true in general, especially in cases involving generalized coordinates
that are not necessarily position coordinates.

Obtaining H from L

In physics, the Legendre transform commonly appears in thermodynamics
and classical mechanics. It is used to convert functions of one quantity (such

https://en.wikipedia.org/wiki/William_Rowan_Hamilton
https://www.aapt.org/docdirectory/meetingpresentations/sm14/mungan-poster.pdf
https://web.physics.wustl.edu/alford/physics/Legendre_introduction.pdf
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13 we have already encountered the
Hamiltonian H in EL equation of the
2nd kind in equation 69

remember this form of the Euler
Lagrange equation is valid for systems
with holonomic constraints and forces
derivable from a potential

14 in the 2nD phase space

15 the subscripts i are dropped for
simplicity

as position, pressure, or temperature) into functions of the conjugate quan-
tity (momentum, volume, and entropy, respectively). In classical mechanics
we use Legendre transform to derive the Hamiltonian formalism out of the
Lagrangian formalism and in thermodynamics to derive thermodynamic
potentials.

The Legendre transformation is a recipe for starting with a function of
multiple variables that may be grouped into two sets active and passive
and generating a new function where the passive variables remain but the
active variables are replaced by a new set of variables. If the transformation
is repeated, it restores the old function of the old variables.

In case of the Lagrangian to Hamiltonian transformation given by13;

H(pi, qi, t) = ∑
i

pi q̇i − L(q̇i, qi, t) (287)

here, qi are the passive variables and q̇i are the active variables that get
replaced by pi. But, how does that happen?

pi =
∂L
∂q̇i

&
d
dt
(

∂L
∂q̇i

)− ∂L
∂qi

= 0 (288)

=⇒ ṗi =
∂L
∂qi

(289)

Thus pi = f (q̇i, qi, t) in principle may be inverted to give q̇i = F(pi, qi, t)
thus allow us to eliminate q̇i from the RHS of equation 287 making H a
function of p, q, t only.

Hamilton’s equations of motion

Since the Legendre transformation can be made equally well in either direc-
tion, why do we prefer the variable p and the Hamiltonian H(q, p) to the
choice of q̇ and L(q̇, q, t)? The key feature of using the canonical momentum
p, which is the tangent to the Lagrangian, instead of q̇, is that Hamilton’s
Principle holds for dynamically independent variations of q and p. The
arbitrary variations14 δp and δq are truly independent at each point in time,
unlike the variations δq and δq̇, which were never independent. Recall the
discussion on principle of least action applied on the Lagrangian15;

δS =
∫ t2

t1

δLdt =
∫ t2

t1

δ(pq̇− H)dt = 0 (290)

δL = q̇δp + pδq̇− δH (291)

δH =
∂H
∂p

δp +
∂H
∂q

δq (292)

δL = (q̇− ∂H
∂p

)δp− ( ṗ +
∂H
∂q

)δq +
d
dt
(pδq) (293)

The requirement that
∫

δLdt = 0 then indicates that the last term on
RHS of equation 293 is zero ∵ δq vanishes at the end points. The validity
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In contrast to the Lagrangian formalism
that gives n 2nd order differential
EOMs the Hamiltonian formalism
yields 2n first-order EOMs. The fact
that q and p are treated symmetrically
allows for the discovery of some
important theorems i.e. Liouville’s
Theorem, the Poincare Recurrence
Theorem.

of the Hamilton’s principle requires that action (S) will be extremal for
independent arbitrary variations of p and q if and only if the coefficients of
δp and δq are identically zero. That gives us;

q̇ =
∂H
∂p

& ṗ = −∂H
∂q

(294)

Now lets look at the differential of the function H(p, q, t).

dH = q̇dp− ṗdq +
∂H
∂t

dt (295)

=⇒ dH
dt

= q̇ ṗ− ṗq̇ +
∂H
∂t

=
∂H
∂t

(296)

where we have used the equations 154 to replace the coefficients of the first 2
terms on the RHS. Now equation 287 also tells us that;

H = pq̇− L(q̇, q, t) (297)

=⇒ dH = q̇dp + pdq̇− ∂L
∂q̇

dq̇− ∂L
∂q

dq− ∂L
∂t

dt (298)

=⇒ dH = q̇dp− ∂L
∂q

dq− ∂L
∂t

dt (299)

=⇒ dH = q̇dp− ṗdq− ∂L
∂t

dt (300)

=⇒ dH
dt

= q̇ ṗ− ṗq̇− ∂L
∂t

= −∂L
∂t

(301)

Along with the equations in 156 a comparison of equations 158 and 163
then gives us the Hamilton’s equations of motion;

q̇i =
∂H
∂pi

& ṗi = −
∂H
∂qi

&
dH
dt

= −∂L
∂t

(302)

We have reinserted the subscripts corresponding to the generalized coordi-
nates of the problem.

Problem 1

The simple harmonic oscillator in Hamiltonian formalism. Consider the
single particle system with the Lagrangian;

L = T −V =
1
2

mẋ2 − 1
2

kx2 (303)

p =
∂L
∂ẋ

= mẋ (304)

=⇒ H = pẋ− L (305)

= mẋ2 − mẋ2

2
+

kx2

2
(306)

H(p, x) =
p2

2m
+

kx2

2
(307)
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16 Note: we can also eliminate x between
the 2 first order differential equations
and obtain a differential equation in p

p̈ = − k
m p

Figure 44: Elliptical trajectory
for the 1D simple harmonic
oscillator in phase space

and the Hamilton’s EOM for ṗ and q̇ are;

ẋ =
∂H
∂p

=
p
m

& ṗ = −∂H
∂x

= −kx (308)

Note that since the Lagrangian is not explicitly a function of time =⇒ dH
dt

= 0 i.e. H is a constant of motion and is also the total energy of the system.
The simplest way to solve these two equations is to eliminate p between the
equations above and we obtain our familiar second order differential equation
mẍ = −kx with the equally familiar solution16

x = A cos(ωt− δ) p =
∂L
∂ẋ

= −mωA sin(ωt− δ) (309)

The phase space for the 1D oscillator is 2D with coordinates (x, p) where
the above solutions for x and p is the parametric equation of an ellipse. The
way the above solutions are written implies that x is maximum (x = A)
at t = 0 and as t increases x decreases and p increases, thus the ellipse is
traced in the clockwise direction. Figure 44, shows two orbits for the cases
that the oscillator started out from rest at x = A (solid curve) and x = A/2
(dashed curve). That the orbits have to be ellipses follows from conservation
of energy i.e. H = total energy = 1

2 mω2 A2 which allows us to write the
equation of the ellipse in the phase space as;

x2

A2 +
p2

(mωA)2 = 1

Thus the Hamiltonian formalism along with the phase space plots does give
us some extra insight into the problem than before. Unfortunately, none of
these examples exhibit any of the significant advantages of the Hamiltonian
over the Lagrangian approach; rather, the Hamiltonian approach is just an
alternative (at times circuitous) route to the same final EOMs.

Problem 2: Atwood’s Machine

Problem 3: Particle in a Central Force Field

Using the plane polar coordinates (r, θ), the Hamiltonian can be written as,

H =
1

2m

(
p2

r +
p2

θ

r2

)
+ V(r) (310)

Since the coordinate θ is a cyclic coordinate, i.e. it does not appear explicitly
in the Hamiltonian, its conjugate momentum pθ is a constant of the motion,
of magnitude l of the angular momentum. The Hamilton’s equations of
motion for the θ coordinate are given by

θ̇ =
∂H
∂pθ

=
pθ

mr2 =
l

mr2 (311)

ṗθ = −∂H
∂θ

= 0 =⇒ pθ = constant (312)
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This is extra material that may be
skipped

Similarly, the Hamilton’s EOM for r is

ṙ =
∂H
∂pr

=
pr

m
(313)

ṗr = −∂H
∂r

=
p2

θ

mr3 −
dV
dr

(314)

Taking the second derivative of r with respect to time and using Hamilton’s
equation of motion for pr yields the radial EOM;

r̈ =
1
m

dpr

dt
= − 1

m

(
∂H
∂r

)
=

p2
ϕ

m2r3 −
1
m

dV
dr

=
L2

m2r3 +
1
m

F(r) (315)

Problem 4

Hamilton’s Equations for a point mass on a cone

The Relativistic Lagrangian

The selling point of the Hamiltonian formalism i.e. writing the Hamiltonian
for a system followed by obtaining the Hamilton’s EOM is the physical
identification of the total energy of a system with the Hamiltonian. As
an example consider a relativistic free particle, with the corresponding
Hamiltonian given by;

H = E =
√

m2
oc4 + p2c2 (316)

where mo is the rest mass of the particle, c is the velocity of light and p the
momentum. We can obtain the Lagrangian of the system as,

H = ∑ pi q̇i − L

=⇒ H = ∑ pi
∂H
∂pi
− L

=⇒ L = ∑ pi
∂H
∂pi
− H

= ∑ pi
pic2

H
− H

= (p2c2 − H2)/H

=
−m2

oc4√
m2

oc4 + p2c2

= moc2
√

1− v2/c2

And the action integral for the relativistic free particle can be written as,

S =
∫

moc2
√

1− v2/c2dt (317)

using the variational principle δS = 0 then yields the correct equations of
motion. Note that the Lagrangian is not the KE of the particle.
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Figure 45: Phase space action
including t as an axis. δq = 0

but not necessarily δp = 0, at
the endpoints.
The end conditions are q(t0) = q0 and
q(t1) = q1. However, the boundary
condition on p is natural in the sense
that there are no stipulations at the end
points. We have a sort of "clothesline"
boundary condition as depicted in
the figure, where the trajectory is free
to slide along the lines of constant q
along the p direction. adapted from
Hamiltonian description of the ideal
fluid. P. J. Morrison, Rev. Mod. Phys.
70, 467, 1998

17 see discussion on pages 37 and 38

Canonical Transformations

You will recognise that using the right coordinate system e.g. exploiting
a inherent symmetry of a system eases the path towards finding the most
conducive form of the EOMs and likely the ensuing solution. For example
for a single particle in a central force field it is immensely helpful to use the
spherical polar system than the Cartesian coordinates. Such transformations
between coordinates is known as point transformations. In the phase space,
however, the most general transformation would involve both the p’s and q’s
and are known as contact transformations. Canonical transformation are a
sub-class of contact transformations.

To begin with recall Hamilton’s principle which says;

Thus we can define a phase space action as,

S(q, p) =
∫
(pi q̇i − H)dt (318)

the variation of which is zero for the correct path in phase space. Also
recall that the L is not unique17 but for any arbitrary function F(q, t) we
can create a new Lagrangian L′ = L + d

dt F(q, t) that will yield the same
EOMsThe same is true in the phase space, we can always migrate from L to
L′ as;

L = pi q̇i − H → L′ = pi q̇i − H − d
dt

F(pi, qi, t) (319)

the difference being that in the phase space F(qi, pi, t) may be a function of
the pi’s also. But we still demand that δF vanishes at the end points which
now requires both δq and δp = 0 at the end points. This non-uniqueness of
the L and H has important consequences that may be effectively exploited.

https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1103/RevModPhys.70.467
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This would also imply that;
dF = −pdq + PdQ + (H − K)dt is an
exact differential. A condition for a
transformation to be canonical.

18 see Goldstein Chapter 9

Now, consider a coordinate transformation of the 2n variables (qi, pi)→
(Qi, Pi) from one phase space to another;

Qi = Qi(qj, pj, t)Pi = Pi(qj, pj, t) (320)

obviously many such transformations are possible but we are interested in
those that satisfy the conditions below, involving a function K(Pi, Qi, t),
which is defined in the new transformed phase space and is equivalent to the
original Hamiltonian.

Q̇i =
∂K
∂Pi

& Ṗi = −
∂K
∂Qi

(321)

demanding that;

• there exists K in P, Q space such that δ
∫
(PQ̇− K)dt = 0

• the transformed coordinates P, Q are canonical coordinates

Such transformations are known as canonical transformations. The validity
of Hamilton’s principle in both the phase spaces essentially requires that,

δ
∫
(pq̇− H)dt = δ

∫
(PQ̇− K)dt = 0 (322)

This does not imply that the integrands are equal but that they are related as;

pi q̇i − H − dF
dt

= PiQ̇i − K (323)

By definition, Canonical transformations take us from one set of coordinates
q and their conjugate momenta p to another set (P, Q) in a way that the
structure of the Hamilton’s equation are preserved. The motivation of these
transformations is to make as many of the coordinates (or momenta) cyclic
or ignorable as possible in the transformed equivalent Hamiltonian, thus
maximising the number of constants of motion. For each cyclic coordinate
we will have a conserved momentum and so on. Indeed if all the coordinates
and momenta can be made cyclic then the resulting Hamiltonian will be a
constant (why not 0?) and will trivially yield all the constants of motion in
terms of the initial conditions, without having to solve the EOMs! This is a
unique way of exploiting an associated symmetry of the problem to yield a
conserved quantity.

The function F above in equation 323 in general is a hybrid function
i.e. F = F(q, p, Q, P, t) and defines the transformation, hence is known
as the generating function. Indeed, a F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside
the time) are from the old set and half are from the new. It then acts, as it
were, as a bridge between the two sets of canonical variables and is called
the generating function of the transformation18. To demonstrate the nature
and flexibility afforded by a generating function, consider the case where
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the function F = F(q, Q, t). The above equality (equation 323) would then
require;

PiQ̇i − K = pi q̇i − H − dF
dt

(324)

= pi q̇i − H − ∂F
∂q

q̇− ∂F
∂Q

Q̇− ∂F
∂t

(325)

If either side of the above equation is to be exactly equal then;

K = H +
∂F
∂t

(326)

pi =
∂F
∂qi

(327)

Pi = −
∂F
∂Qi

(328)

Therefore given F we can obtain the new set of canonical coordinates that
satisfy Hamilton’s principle in the new phase space. Such transformations
are known as canonical transformation. However all canonical transforma-
tions will not be derivable from a function of the form F(q, Q, t) but other
sets of old and new coordinates. As an example consider the following;

δ
∫
(pi q̇i − H − dF

dt
)dt = 0 (329)

δ
∫
(

d
dt
(piqi)− ṗiqi − H − dF

dt
)dt = 0 (330)

δ
∫
(− ṗiqi − H − d

dt
(F− piqi))dt = 0 (331)

δ
∫
(− ṗiqi − H − dF3

dt
)dt = 0 (332)

Here we have F3 = F− pq as our new generator function. Now we choose
that F3 = F3(pi, Qi, t) and therefore the integrand of the last equation (332)
becomes

− ṗiqi − H − dF3

dt
= − ṗiqi − H − ∂F3

∂pi
ṗi −

∂F3

∂Qi
Q̇i −

∂F3

∂t
(333)

Equality of the above equation (332) with δ
∫
(PQ̇− K)dt = 0 then requires

that;

K = H +
∂F3

∂t
(334)

qi = −
∂F3

∂pi
(335)

Pi = −
∂F3

∂Qi
(336)

Note that self consistency ensuring the validity of the canonical nature of the
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transformations for the above 2 cases would also demand;

∂pi
∂Qj

=
∂2F

∂Qj∂qi
= −

∂Pj

∂qi
6= 0 (337)

∂qi
∂Qj

=
∂Pj

∂pi
(338)

Table ?? below (adapted from Goldstein) summarises the 4 basic types
of generating functions and their derivatives that also yield the actual
canonical transformations, along with some special trivial cases. Note that
each type involves half the variables of the original coordinates and half the
new coordinates. See figure 46 for further details.

Generating Function Derivatives Special Case

F = F1(q, Q, t) pi =
∂F1
∂qi

Pi =
∂F1
∂Qi

F1 = qiQi, Qi = pi, Pi = −qi

F = F2(q, P, t)−QiPi pi =
∂F2
∂qi

Qi =
∂F2
∂Pi

F2 = qiPi, Qi = qi, Pi = pi

F = F3(p, Q, t) + qi pi qi = − ∂F3
∂pi

Pi = − ∂F3
∂Qi

F3 = piQi, Qi = −qi, Pi = −pi

F = F4(p, P, t) + qi pi −QiPi qi = − ∂F4
∂pi

Qi =
∂F4
∂Pi

F4 = piPi, Qi = pi, Pi = −qi

It is important to note that these 4 functions are by no means complete,
but show the most useful basic forms of the generating functions. The trans-
formation equations (derivatives of the generating function) are obtained by
matching the coefficients of the differentials on either side of the equation
324. Note that the 4 basic forms of the generating functions may be found
by repeated use of the Legendre transformations replacing the dependence
from one variable to the next. To summarise the following steps need to be
executed to effect a canonical transformation.

• Define F

• Use the corresponding derivatives of F i.e. relations in the middle column
of table ?? to set up the transformation equation

• Use the relation K = H + ∂F
∂t to find the transformed Hamiltonian
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Figure 46: Calculating the trans-
formations from the 4 basic
generating functions.
Important: Case II and III are
interchanged between data
presented in figures 46 and the
table above.
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Problem 5

Consider the generating function F1(q, Q, t) = qQ

=⇒ p =
∂F1

∂q
& P = −∂F1

∂Q
(339)

which gives us the transformation p = Q and P = −q, effectively changing
the role of the momenta and coordinates, demonstrating that the physical
demarcation between generalised momenta and coordinates, is some sense,
becomes irrelevant in canonical transformations.

Problem 6

Consider the generating function F3(p, Q, t) = −pQ

=⇒ q = −∂F3

∂p
& P = −∂F3

∂Q
(340)

which gives us the trivial identity transformation q = Q and p = P. Indeed
the canonical transformations form a group, which necessitates the existence
of the identity transformation and that the combination of any 2 canonical
transformation is also a canonical transformation.

Problem 7

Consider the generating function F3(p, Q) = −pQ + εH, where ε is a
parameter independent of q, p, Q, P.

=⇒ q = −∂F3

∂p
= Q− ε

∂H
∂p

= Q− εq̇ (341)

=⇒ P = −∂F3

∂Q
= p + ε

∂H
∂Q

= p + εṖ (342)

Now, say ε = dt

=⇒ Q = q + εq̇ (343)

P = p + ε ṗ (344)

Note: we have replaced Ṗ by ṗ in the above equation and this is acceptable
because as demonstrated through the equations the difference between them
will be infinitesimal. Together the last 2 equations tell us that the canonical
transformation gives us the values of the variables q and p at a translated
time by +dt. The generating function importantly involves the Hamiltonian
of the system. Again the inverse canonical transformation would have
translated time backwards by −dt and repeated applications of the same
would have given us the variables at their initial values or the values given
at any specified instant. This is akin to saying that all variables have been
made cyclic.
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Problem 8

Consider the SHO whose H = p2

2m + m2ω2q2

2m . The mathematical form of the
Hamiltonian tells us that since it is a sum of 2 squares a transformation of
the form p =

√
f (P) cos Q and q =

√
f (P)/mω cos Q would make the

coordinate Q cyclic, where f (P) is some function of P.

H′ =
f (P)
2m

cos2 Q +
m2ω2

2m
f (P)

m2ω2 sin2 Q (345)

=
f (P)
2m

(346)

The modified H′ should also satisfy Hamilton’s EOMs i.e.

Q̇ =
∂H′

∂P
=

1
2m

∂

∂P
f (P) & Ṗ = −∂H′

∂Q
= − 1

2m
∂

∂Q
f (P) = 0 (347)

Since f (P) is quite arbitrary choose it such that Q̇ = ω, which is a constant.
Thus Q(t) = ωt + α and P(t) = A(constant).

=⇒ f (P) = 2mPω (348)

=⇒ p =
√

2mAω cos(ωt + α) (349)

=⇒ q =
√

2A/mω sin(ωt + α) (350)

The constant A can be very easily identified in terms of the total energy E of
the system as A = E/ω.The p, q phase space plot of the SHO is obviously
an ellipse as discussed earlier. What about the trajectory of the SHO in the
P, Q phase space? Obviously, P = E/ω at all times i.e. for all values of
Q which implies that the plot is a straight line in the P, Q space, that lies
parallel to the Q axis and intersects the P axis at E/ω.

Poisson Brackets

Poisson brackets are algebraic constructs that are of greater significance to
Quantum Mechanics. At the outset lets get familiar with the rules of these
algebraic constructs. Let α and β be any two functions of qi and pi, and we
define the Poisson bracket of these two functions as;

[α, β] = ∑
∂α

∂qi

∂β

∂pi
−∑

∂α

∂pi

∂β

∂qi
(351)

which immediately implies the following identities;

1. [β, α] = −[α, β]

2. [α, α] = 0

3. [cα, dβ] = cd[α, β]

4. [α, β + γ] = [α, β] + [α, γ]
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5. [α + γ, β] = [α, β] + [γ, β]

6. [qi, qk] = 0; [pi, pk] = 0; [qi, pk] = δik

7. [α, [γ, β]] + [β, [γ, α]] + [γ, [α, β]] = 0 (Jacobi identity)

One of the most useful demonstrations of the Poisson bracket is by show-
ing that [Lx, Ly]=Lz. L = r× p and it is left as homework to prove that
[Lx, Ly]=Lz, which is of significance in quantum mechanics.

Another interesting application is to demonstrate temporal evolution of
any variable α(p, q, t) i.e. the EOMs of α. We can easily show that;

dα

dt
=

∂α

∂q
q̇ +

∂α

∂p
ṗ +

∂α

∂t
(352)

dα

dt
=

∂α

∂q
∂H
∂p
− ∂α

∂p
∂H
∂q

+
∂α

∂t
(353)

= [α, H] +
∂α

∂t
(354)

which immediately shows that if H is not explicitly dependent on time
then dH

dt = 0 and is a constant of motion or a conserved quantity. Which
also shows that if a variable α(p, q) is not explicitly a function of time i.e.
∂α
∂t = 0 and it’s Poisson bracket with H i.e. [α, H] = 0, then α is a constant
of motion. We can also prove that if two functions α and β are constants of
motion i.e. dα

dt = 0 and dβ
dt = 0 then [α, β] is also a constant of motion.

The fact that [qi, pk] = δik can also be used to check the canonical nature
of a transformation because after transformation [Qi, Pk] = δik. For example
consider the generating function F3(Q, p) = −(eQ − 1)2 tan p. Then the
transformation equations are given by;

=⇒ q = −∂F3

∂p
= −(eQ − 1)2 sec2 p (355)

=⇒ P = −∂F3

∂Q
= −2(eQ − 1)eQ tan p (356)

which may be de-convoluted to give

Q = ln(1 +
√

q cos p) (357)

P = 2(1 +
√

q cos p)
√

q sin p (358)

Is the transformation canonical?
What about the transformation P = q and Q = p

[Q, P] =
∂Q
∂q

∂P
∂p
− ∂Q

∂p
∂P
∂q

= −1( 6= 0) (359)

Since the above Poisson bracket is 6= 1 the transformation is not canonical!
However, as seen before we can show that for the transformation P = −q
and Q = p, [Q, P] = 1 i.e. the transformation is canonical.
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Consider the transformation and test whether it is canonical or not.

Q = −p sin(t) + q cos(t) (360)

P = p cos(t) + q sin(t) (361)

=⇒ [Q, P] = cos2 t + sin2 t = 1 (362)

which proves that the transformation is canonical. Obtain the generating
function?

Consider the transformation below and derive the condition for the
transformation to be canonical.

X =
αp
x

(363)

P = βx2 (364)

=⇒ [X, P] = −2αβ (365)

=⇒ β = − 1
2α

(366)

if the generating function is of the type F1(x, X, t) then;

p =
∂F1

∂x
=

Xx
α

(367)

=⇒ F1 =
Xx2

2α
+ f1(X) (368)

P = −∂F1

∂X
= βx2 (369)

=⇒ F1 = −βXx2 + f2(x) =
Xx2

2α
+ f2(x) (370)

together it shows that F1 = Xx2

2α . Now apply the above transformation to the
case of a SHO and obtain the solution in terms of the transformed variables
P and X and then the original variables p and x.
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Figure 47: Modified Atwood’s
machine

Homework

1. Setup the Hamiltonian for the following:
(i) a free particle in spherical polar coordinate system.
(ii) the harmonic oscillator.
(iii) a top whose Lagrangian is given by;

L =
1
2

A(θ̇2 + φ̇2 sin2 θ) +
1
2

B(ψ̇2 + φ̇2 cos2 θ)−V

θ, φψ are the generalized coordinates and A, B are constants and V is a
function of coordinates only.
(iv) a free particle in a rotating reference frame.

2. The Hamiltonian of a system with 2 DOF is H = 1
2 (p2

1q4
1 + p2

2q2
1 − 2αq1),

where α is a constant. Show that q1 varies sinusoidally with q2.

3. Use Hamilton’s formalism to solve for the equations of motion;
(i) H = (1/2m)(p2

r + p2
θ/r2) + V(r)

(ii) H = (1/2m)(p2
x + p2

y) + mgy

4. Investigate the motion of a particle whose Hamiltonian is H = αp2 + βeq2
,

where α and β are constants.

5. Consider a simple pendulum with the mass of the bob varying as a
function of time as m = m0eαt. Write down the Lagrangian of the system
and derive the EOMs. Obtain the Hamiltonian of the system from L.
Calculate dH/dt and show that it is = −αL.

6. Consider a modified Atwood machine as shown in the figure 47 The two
blocks on the left have equal masses m and are linked by a massless spring
of force constant k. The weight on the right has mass M = 2m, and the
pulley is massless and frictionless. The coordinate x is the extension of
the spring from its equilibrium length; that is, the length of the spring is
le + x where le is the equilibrium length (with all the weights in position
and M held stationary).

(a) Show that the total potential energy is V = 1
2 kx2 (plus a constant

that can be ignored). (b) Find the two momenta conjugate to x and y and
write down the Hamiltonian. Show that the coordinate y is ignorable. (c)
Write down the four Hamilton equations and solve them for the following
initial conditions: You hold the mass M fixed with the whole system in
equilibrium and y = y0. Still holding M fixed, you pull the lower mass
m down a distance x0, and at t = 0 you let go of both masses. Describe
the motion. In particular, find the frequency with which x oscillates.
[Hint: Write down the initial values of x, y and their momenta. You can
solve the x equations by combining them into a second-order equation
for x. Once you know x(t), you can quickly write down the other three
variables.]
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L = 1
2 mv2 + ev.A− eV

7. Consider a mass m confined to the x axis and subject to a force F = kx
where k > 0. (a) Write down and sketch the potential energy V(x) and
describe the possible motion of the mass. (Distinguish between the cases
that E > 0 and E < 0.) (b) Write down the Hamiltonian, and describe
the possible phase-space orbits for the two cases E > 0 and E < 0.
(Remember that the function H(x, p) must equal the constant energy E.)
Explain your answers to part (b) in terms of those to part (a).

8. In discussing the oscillation of a mass at the end of a spring, we assume
the spring is massless. Set up the Hamiltonian for a block of mass m
attached to a spring (force constant k) whose mass M is not negligible,
using the extension x of the spring as the generalized coordinate. Solve
Hamilton’s equations and show that the mass oscillates with angular
frequency ω =

√
k/(m + M/3). That is, the effect of the non-zero

spring’s mass is to add M/3 to m. (Assume that the spring’s mass is
distributed uniformly and that it stretches uniformly.)

9. Show that the Hamiltonian for a charged particle (e) in an electromag-
netic field is given by;

H =
1

2m
(p− eA)2 + eV

A and V are the vector and scalar potentials respectively.

10. A Hamiltonian in a rotating coordinate system (constant angular velocity
ω) is not the total energy, but nevertheless is a conserved quantity if the
potential has rotational symmetry about the axis of rotation. Derive an
expression for the difference between the H and total energy. Can you
identify the result with a physical parameter of the system?

11. Find the relation between the constants a and b if the following transfor-
mation is to be canonical. q = aP

1
2 sin Q, p = bP

1
2 cos Q. Find the the

values of a and b post transformation if the H of a harmonic oscillator is
to be a multiple of P.

12. Find the canonical transformation by which the H for a freely falling
particle becomes a multiple of P after the transformation.

13. For a harmonic oscillator H = 1
2 (p2 + ω2q2). If the generator function

of a transformation is given by F(q, Q) = 1
2 ωq2 cot(2πQ), obtain the

Hamiltons EOM with the transformed coordinates and solve for the same.

14. Find the form of the function f (q) below for which the transformation
will be canonical.

Q = f (q) cos p p = f (q) sin p
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K is known as the momentum space
Lagrangian.

15. Consider a harmonic oscillator with H = 1
2 (p2 + ω2q2).

(i) Derive the Lagrangian of the system from H.
(ii) Perform a double Legendre transformation on L as shown below to
replace q and q̇ with p and ṗ to derive the new function K.

K(p, ṗ, t) = L(q, q̇, t)− pq̇− qṗ (371)

(iii) Show that K has the same functional form in momentum space as the
Lagrangian L has in the coordinate space.
(iv) Show that K satisfies the EL EOMs in the momentum space;

d
dt
(

∂K
∂ ṗ

)− ∂K
∂p

= 0

16. Prove that for H = p2

2m + mω2q2

2 , the function u(p, q, t) = ln(p +

imωq)− iωt is a constant of motion. Hint: show that du
dt = [α, H] + ∂α

∂t
= 0.





Figure 48: Instantaneous axis of
rotation

Rotational Reference
Frames

• The arbitrary motion of a point in space may always be instantaneously
described as a pure rotation about an instantaneous axis of rotation i.e.
as if the point is moving along the circumference of an imaginary circle,
with the axis of rotation passing through the centre of the circle and ⊥′ r
to its plane

• The linear velocity of the particle at every instant may therefore be
written as

~v = ~ω×~r (372)

where ~v is the linear velocity, ~ω = dθ
dt n̂ is the instantaneous angular

velocity and~r is the position vector of the point

• Successive finite rotation operations are non-commutative but infinitesi-
mal rotations are commutative

• Infinitesimal rotations can be represented by axial vectors but finite
rotations cannot be represented as vectors

Say a point moves such that it’s position vector~r changes to~r + d~r over
time dt. Since this motion may be described by pure rotation the change
is given by,

d~r = d~θ ×~r (373)





Appendix A: D’Alembert’s
Principle: Extending the
principle of virtual work from
static to dynamical systems.

Virtual Displacement

Consider a mechanical system with the system coordinates ~ri, which are
all not independent but related via constraints. Each coordinate undergoes
virtual displacements δ~ri subject to the following understanding.

1. Time is held fixed during the virtual displacement, thus no actual dis-
placement of the system takes place.

2. The virtual displacements do not violate the constraint equations, but
may make use of any remaining unconstrained DOF

3. Are consistent with the forces imposed on the system

4. ~̇ri is the corresponding velocity

Similarly virtual displacements of generalised coordinates δqi necessarily
satisfy all of the above.

Virtual Work

Using the virtual displacement, we may define virtual work δW as the work
that would be done on the system by the forces acting on the system as the
system undergoes the virtual displacement;

δW = ∑
i

~Fi.δ~ri (374)

where ~Fi (~Fi = ~Fi(nc) + ~fi(c)) is the total force acting on the coordinate
of the ith particle and is the sum of external non constraint ~Fi(nc) and
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Figure 49: The pulley system:
Atwood’s machine

constraint forces ~fi(c). For a system in static equilibrium the total force on a
constituent particle ~Fi=0, therefore;

δW = 0 (at equilibrium)

Assumption: The net virtual work done by constraint forces is zero;
∑i

~fi(c).δ~ri = 0. Note: We DO NOT assume that the virtual work done
by each constraint force is individually zero but the NET work done under
virtual displacement is zero. This implies that at equilibrium;

∑
i

~Fi(nc).δ~ri = 0

This is called principle of virtual work. The net work done by the non-
constraint forces is zero for virtual displacements, at static equilibrium. Can
we have an equivalent deduction for dynamical systems? We’ll answer that
a bit later. First analyse the assumption introduced above and what kind
of constraints satisfy the assumption. Schaum’s Outline on Lagrangian
Dynamics (D. A. Wells) says “While the truth of this statement is easily
demonstrated with simple examples, a general proof is usually not attempted.
It may be regarded as a postulate.” Goldstein simply states that “We now
restrict ourselves to systems for which the net virtual work of the forces
of constraint is zero”. Hand and Finch state “Recall that since constraint
forces always act to maintain the constraint, they point in a direction
perpendicular to the movement of the parts of the system. This means that
the constraint forces do not contribute anything to the virtual work.” But all
these statements are either not obviously true or is confusing as to what they
actually mean. Find an example where they are apparently violated.

Problem X

Consider a pulley system as shown in figure 49 and determine its EOM.
What are the constraint forces and the net virtual work done? Assuming the
pulley is massless, the Lagrangian of the system is given by;

L =
1
2
(m1 + m2) ẋ 2 + g (m1 −m2) x−m2gl

and the EOMs following the Euler Lagrange equation is;

(m1 + m2) ẍ− g (m1 −m2) = 0,

As homework determine the constraint forces i.e. Tension and show that the
net virtual work done is zero. Derive the Lagrangian and the EOM for the
pulley system if the pulley is a disk of mass M and radius R. Show that the
EOM is given by;(

m1 + m2 +
I

R2

)
ẍ− g (m1 −m2) = 0,
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Figure 50: Jean d’Alembert
(1717–1783). Traité de dy-
namique (1743)
19 In writing the transformation equa-
tions we are assuming that the con-
straints are holonomic. Till the state-
ment of D’Alembert’s principle above
the nature of the constraints is not
relevant, but not hereafter

Now lets consider non-equilibrium, dynamical systems and see if there
is an equivalent principle of virtual work. In dynamical systems Newton’s
second law states that;

~̇pi − ~Fi = 0 (375)

=⇒ ∑
i
(~̇pi − ~Fi).δ~ri = 0 (376)

∑
i
(~̇pi − ~Fi(nc)).δ~ri −∑

i

~fi(c).δ~ri = 0 (377)

Again, the last term vanishes invoking the clause that the net virtual work
done by constraint forces is zero and we are left with;

∑
i
(~̇pi − ~Fi(nc)).δ~ri = 0 (378)

This is known as D’Alembert’s principle of virtual work.
Now since all the ~ri may not be independent in general the corresponding

δ~ri are not necessarily independent either. Thus we cannot demand that
their individual coefficients go to zero i.e. ~̇pi − ~Fi(nc) 6= 0. Note that
physically, the rate of change of momentum of a particle (ṗ) is NOT equal
to only the non-constraint forces ~Fi(nc), but the net force acting on it -
Newton’s 2nd Law! However, if we transform the coordinates to a set of
independent generalised coordinates we can demand that the coefficient of
every δqi be equal to zero. Consider the transformation that maps the ~ri to a
set of independent gerneralised coordinates qi

19.

~ri = ~ri(q1, q2, ...., qn, t) (379)

=⇒ δ~ri = ∑
j

∂~ri
∂qj

δqj (380)

~̇ri = ~vi = ∑
j

∂~ri
∂qj

q̇j +
∂~ri
∂t

(381)

=⇒ ∂~vi
∂q̇j

=
∂~ri
∂qj

(382)

Now in terms of the generalised coordinates and their variation the virtual
work done becomes;

δW = ∑
i

~Fi.δ~ri = ∑
i,j

~Fi.
∂~ri
∂qj

δqj (383)

= ∑
j
Fjδqj (384)

where Fj = ∑
i

~Fi.
∂~ri
∂qj

(385)

The Fj are known as generalised forces - but do not necessarily have the
dimensions of force, since the qi do not necessarily have the dimension of
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distance. Now lets consider the first term of the equation 376;

∑
i
~̇pi.δ~ri = ∑

i
m~̈ri.δ~ri = ∑

i,j
m~̈ri.

∂~ri
∂qj

δqj (386)

∑
i

m~̈ri.
∂~ri
∂qj

= ∑
i
[

d
dt
(m~̇ri.

∂~ri
∂qj

)−m~̇ri.
d
dt

∂~ri
∂qj

] (387)

d
dt
(

∂~ri
∂qj

) =
∂~̇ri
∂qj

=
∂~vi
∂qj

(388)

The last equation follows from interchange of time (d/dt) and coordinate
(∂/∂qj) derivatives. Note: This interchange is possible if the 2 differentiation
operations commute when acting on ~ri, which is a non-trivial statement
because qi is time-dependent. Now lets go back to equation 376.

∑
i
(~̇pi − ~Fi).δ~ri = ∑

i
~̇pi.δ~ri −∑

i

~Fi.δ~ri = 0

∑
i,j
[

d
dt
(m~̇ri.

∂~ri
∂qj

)−m~̇ri.
∂~vi
∂qj

]δqj −∑
i
Fiδqi = 0

∑
i,j
[

d
dt
(mvi.

∂~vi
∂q̇j

)−mvi.
∂~vi
∂qj

]δqj −∑
i
Fiδqi = 0

Using the fact that the kinetic energy T = ∑ miv2
i /2 and ∂T

∂q̇i
= ∑ mvi.

∂~vi
∂q̇j

,
we can write that

∑
i
[

d
dt
(

∂T
∂q̇i

)− ∂T
∂qj
−Fi]δqi = 0 (389)

This is finally the D’Alembert’s principle for variation of generalised coor-
dinates, which are all independent and arbitrary. Thus the term in square
brackets must each individually go to zero.

d
dt
(

∂T
∂q̇i

)− ∂T
∂qj

= Fi (390)

For forces derivable from a scalar potential V, the generalised force is given
as Fi = −∂V/∂qi and the above equation can be rewritten as;

d
dt
(

∂(T −V)

∂q̇i
)− ∂(T −V)

∂qj
= 0 (391)

The term T − V = L is the Lagrangian of the system and the equation is
akin to the Euler Lagrange equations of motion. In conclusion, Note the
following;

1. The general form of D’Alembert’s principle does not assume anything
about the nature of the constraints.

2. writing the coordinate transformation equation then assumes the con-
straints to be holonomic



115

3. Identification of the Lagrangian to be of the form L = T − V along
with the above EOM is valid only when the forces are derivable from a
potential and the constraints are holonomic.

Can you deduce the above for a system with variable mass?





Appendix B: Hidden
Symmetry of the Laplace
Runge Lenz Vector

Apart from the facts that the inverse square law force allows closed orbits
that are conic sections like ellipses, circles and precessing ellipses it is also
characterised by a large number of conserved quantities. In addition to the
obvious conservation of energy E and angular momentum L, the Kepler
problem yields an additional conserved quantity namely the Laplace-Runge-
Lenz (LRL) vector. Following Noether’s theorem of associating conserved
quantities with symmetry transformations one wonders what symmetry the
LRL vector is associated with.

By choosing a nice parametrization we show that the equations of motion
and the conservation of energy describe a harmonic oscillator with an extra
derivative in four dimensions and a four dimensional sphere, respectively.
From this we define a conserved bivector. The components of this bivector
correspond to the LRL vector and angular momenta The Kepler problem
concerns the motion of 2 bodies interacting via a inverse square law force or
the equivalent one-body problem with reduced mass m and position vector~r,
moving about an attractive centre of force at the origin.

F =
−k
r2 r̂ (392)

where k is a constant. The EOM is given by,

m
d2~r
dt2 =

−k
r2 r̂ (393)

and the energy conservation relation given as,

m
2
(

d~r
dt
)2 − k

r
= E (394)
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Elliptical case

The E < 0 case yields bound states with elliptical orbits. And we can define
some constants-

V =

√
−2E

m

R =
−k
2E

T =
R
V

(395)

here we now consdier the keppler problem is space time where time is no
more a parametre but become a coordinate! becuase of this we are going to
use some arbitary parametre S instead of ususal time t. Differentiating with
respect to S will be denoted by prime. We demand that this new parameter is
such that the following equalities hold:

1
t′

=
dS
dt

=
V
r

and r′ =
dr
dS

(396)

See-this new kind of time ticks more slowly as you get farther from the sun.
So, using this new time speeds up the planet’s motion when it’s far from the
sun. If that seems backwards, just think about it. For a planet very far from
the sun, one day of this new time could equal a week of ordinary time. So,
measured using this new time, a planet far from the sun might travel in one
day what would normally take a week

now using (5) we can modify (3) as-

V2(t′ − T)2 + |~r′|2 = R2 (397)

and this is a equation of spehre in 4D space!!(equation of a 4D spehre)
Since the right hand side of the defining constraint t′ = r

V has dimension
of time, it follows that differentiating with respect to S does not change the
dimension and so S must be a dimensionless quantity. This leads to that
although r′ and r′′ are to be regarded as a kind of velocity and acceleration
vectors, they have the dimension of length and are valid space vectors. In
particular, r, r′ and r′′ can be added or subtracted from each other.

Lets simplify the equation (6) by assuming m=1,E=-1/2,k=1

(t′ − 1)2 + |~r′|2 = 1 (398)

So what is means?
the point (t,x,y,z) in space time cooridiante moves around in 4-dimensional

space as the parameter S changes. What we’re seeing is that the velocity of
this point, namely

v=(t′, x′, y′, z′)

https://www.foundalis.com/phy/4Dsphere.htm
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Figure 51

moves around on a sphere in 4-dimensional space! It’s a sphere of radius one
centered at the point (1,0,0,0) with some further calculation we can show
that

r′′′ = −r′

t′′′ = −(t′ − 1)
(399)

We can state both of them in words as follows: the 4-dimensional velocity v
carries out simple harmonic motion about the point (1,0,0,0)

That’s nice. But since v also stays on the unit sphere centered at this
point, we can conclude something even better: v must move along a great
circle on this sphere, at constant speed! (for a rough visualization in 3D
click on this link)

This implies that the spatial components of the 4-dimensional velocity
have mean 0 , while the t component has mean 1

The first part here makes a lot of sense: our planet doesn’t drift ever
farther from the Sun, so its mean velocity must be zero. The second part is
a bit subtler, but it also makes sense: the ordinary time t moves forward at
speed 1 on average with respect to the new time parameter S, but its rate of
change oscillates in a sinusoidal way.

Conserved space time bivector

The cross product is actually valid only in 3D. whats it generalization in
higher dimensional space? (This will help to understand bivector through
application)Thats why we are introducing the concept of bivector. Since
v-curves are great circles with constant speed we have that τ = v ∧ v′ is a
conserved spacetime bivector in 4D.(where v = (t′ − 1)et + ~r′). It can be
computed as-

τ = et ∧−
1
r
((r− 1)~r + r′~r′) +

1
r
~r ∧~r′ (400)

It consist of a conserved spatial bivector L = 1
r~r ∧~r′ and a conserved space

vector A = − 1
r ((r − 1)~r + r′~r′).The great circles are projected onto the

spatial subspace as centered ellipse-
Such an ellipse lies in the plane given by the bivector L and has major

semiaxis R and area π|L|. With the help of the vector A the equation of
motion for r′′ can be expressed as(see for detail):

r′′ = −r + A (401)

We can show that the conserved bivector L can be identified with the angular
momentum bivector,and the the conserved vector A corresponds to the so
called Laplace-Runge-Lenz vector.

To summarize, we saw that this parametrization in space time gives the
equa- tions of motions and conservation of energy a nice form. From these

http://math.ucr.edu/home/baez/mathematical/harmonic_orbit.gif
http://math.ucr.edu/home/baez/mathematical/harmonic_orbit.gif
https://www.youtube.com/watch?v=VApO4qUgAYY
https://www.youtube.com/watch?v=VApO4qUgAYY
https://math.ucr.edu/home/baez/mathematical/Goransson_Kepler.pdf
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equations the symmetry group SO(4) becomes apparent. These equations
also provide a way of defining the angular momentum and the Runge-
Lenz vector There are many more ways to reach the same conclusion as
mentioned-

1.Algebric approach: -algebric approach
2.Classical approach:classical approach using stereographic projection.
3.The Kepler problem and Jordan algebras
4.The Kepler problem and supersymmetry
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