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0.1 Preface

Semiconductors are a class of materials with electrical conductivity between that of conductors and
insulators and have profoundly shaped the landscape of modern technology. Their discovery and
development have opened doors to an array of electronic devices that are now an integral part of our
daily lives.

In the mid-20th century, scientists began to explore the potential of semiconductors for electronic
applications. Notably, the invention of the transistor in 1947 by John Bardeen, Walter Brattain, and
William Shockley at the Bell Laboratories, USA revolutionised the field of electronics. Transistors,
made from semiconductors like Si and Ge, replaced bulky and less efficient vacuum tubes, leading to
the miniaturisation of electronic circuits and the birth of the modern digital age. Further advancements
in semiconductor technology gave rise to integrated circuits (ICs) and microprocessors, exponentially
increasing computational power and other complex electronic systems. Semiconductors are now at the
core of diverse technologies e.g. computers, smartphones, medical devices, renewable energy systems,
communication networks, and more.

This evolution and innovations in semiconductor materials and technology, including discovery of
newer material systems like conducting polymers, and new fabrication techniques continue to drive
modern research in quantum computing, nanotechnology, energy research and others. Over the years
significant contributions in Semiconductor Physics and Technology and related areas have been recog-
nised by the Nobel Prize as shown in the table below.

Contribution Recipients Year
Thermionic Phenomenon O W Richardson 1928
Invention of Transistor W B Shockley, J Bardeen, W H Brattain 1956
Tunneling in semiconductors and
superconductors

L Esaki, I Giaever 1973

Electron Microscope Ernst Ruska 1986
Scanning Tunneling Microscope G Binnig, H Rohrer 1986
invention of the integrated circuit J S. Kilby 2000
semiconductor heterostructures for
high-speed & opto-electronics

Z I Alferov, H Kroemer 2000

Conducting Polymers# A J Heeger, A G MacDiarmid, H Shirakawa 2000
CCD sensor Willard S. Boyle George E. Smith 2009
Blue light-emitting diode I Akasaki, H Amano, S Nakamura 2014
Quantum Dots# M G Bawendi, L E Brus, A I Ekimov 2023

Table 1: Nobel Prizes awarded in areas related to Semiconductor Physics and Technology. # denotes
awards in Chemistry and all others were awarded in Physics

IMPORTANT: These Notes are not intended as replacement of standard textbooks. Consult the
Text and Reference Books for exposure to standard development and also experimental data.

0.2 Syllabus

• Review of Bulk semiconductors: crystals, compound semiconductors, band- structure, density
of states, doping and carrier concentration, Fermi statistics. [4]

• Electrical Transport in Bulk Semiconductors: Drude model, Boltzmann transport; solutions in
electric and magnetic field; moments of transport equation, continuity equation, diffusion, drift,
thermal gradient etc. [6]

• Semiconductor Junctions: Schottky and heterojunctions, role of interfaces, band bending con-
cept, self-consistent band bending equations (Poisson - Schrodinger etc). Band bending near
surfaces and interfaces. Forward and reverse biased diodes. Applications: thermometry, tunnel
diodes etc. [7]
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• Optical Properties of metals and semiconductors: Optical interactions in metals and semicon-
ductors, reflection, refraction, optical absorption, free carrier absorption, refraction, Kramers
Kronig relation; classical and quantum mechanical description of optical absorption, excitons;
spontaneous and stimulated emission, Einstein coefficients; Photoluminescence and Electrolumi-
nescence. [7]

• Quantum Heterostructures & Reduced dimensional systems: 3D, 2D, 1D electron gas and quan-
tum dot systems; engineering heterostructures and superlattices; optical properties of reduced
dimensional systems; Quantum confined Stark effect. [6]

• Screening in 3D and 2D electron systems: Lattice polarisation; screened Coulomb potential,
remote doping and mobility. [3]

• Photovoltaic Devices: photoconductors, photodiodes, Light Emitting Diodes, Laser Diodes;
Quantum cascade lasers etc. [3]

0.3 Books
1. Semiconductor Devices: Physics and Technology, 3rd Edition, SM Sze and M Lee, Wiley India

2. John Singleton, Band Theory and Electronic Properties of Solids, Oxford Master Series in Con-
densed Matter Physics, Oxford University Press 2001.
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1

Basics of Semiconductors

1.1 Carrier concentration and doping
At T = 0 in a pure semiconductor, the conduction band (CB) is empty and the valence band (VB)
is full. A completely full or a completely empty band cannot conduct current. We will see soon that
under these circumstances the Fermi energy (Ef ) lies in the bandgap (Eg) between the valence and
conduction band. The density of states at the Ef is zero. The semiconductor is an insulator at this
point. In reality there are no qualitative distinction between semiconductors and insulators, but arises
from the difference in Eg between the two. Eg of an insulator is large, e.g. Silicon oxide has Eg ∼
9eV, Diamond has Eg ∼ 5eV and so on. In contrast Eg of typical semiconductors is in the range of
nearly zero to ≤ 4 eV. At very high temperatures, if an insulator hasn’t already melted, it will act as
a semiconductor. Carriers in a semiconductor’s bands come from two sources:
1. Thermally excited electrons in conduction band and the corresponding vacancies left behind in the
valence band.
2. Some suitable foreign atoms called dopants which can put some electrons in CB or capture some
electrons from VB. Sometimes crystal defects can also play the role of foreign atoms.

Consider a group V atom like Phosphorous replacing an atom of group IV Silicon in the lattice.
P has one extra electron compared to Si. We keep aside the question about how to get the P atom
to replace the Si for the time being - but that is not a trivial question. A "dopant" will not work
as a dopant if it does not sit in the right place. It is possible for a P atom to somehow go in as an
"interstitial", that will not work. Also the same atom may act as an acceptor or a donor in some
cases. For example if Si is incorporated in GaAs lattice, replacing a Ga atom, it will act as a donor.
If it replaces an As atom it will act as an acceptor. You can figure out the reason. P can act as a
donor in the Si lattice if the binding energy of that extra electron becomes very low. We discuss a
very simplified model - usually called the "hydrogenic impurity model". Assume that the outermost
electron in P behaves as if it is tied to a hypothetical nucleus - that is the P+ ion core. The binding
energy and Bohr radius of an H atom (1s state) is

E = − me4

8ϵ20h2 (1.1)

aB = 4πϵ ℏ2

me2 (1.2)

Now we make two crucial claims. Inside the "medium" the free electron mass would be modified
such that m → meff and ϵ0 → ϵ0ϵr. Typically ϵr ∼ 10 − 15 for most semiconductor lattices and
meff ∼ 0.1m. That means the binding energy would reduce by a factor of 1000 and the Bohr radius
would increase by a factor of about ∼ 100. So instead of E = 13.6 eV the binding energy will be a
few 1-10 meV, the Bohr radius will increase from 0.5 Å to 50 Å. This means that the electron will
be exploring something of the order of lattice units. This in retrospect justifies the use of the lattice
dielectric which is a quantity meaningful only if averaged over sum volume of the lattice. Also the
fact that the electron gets spread over a large area, means that replacing the free electron mass with
the band effective mass can be justified. If the binding energy drops to a few meV, it is clear that at
room temperature (kBT = 25meV ) these can be almost fully ionised. The order of magnitude of these
numbers ensure that semiconductors can be useful at room temperature.
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Table 1.1: Vital Statistics of Si, Ge, GaAs and ZnO

Properties Si Ge GaAs ZnO
Atomic Density (×1022cc−1) 5.0 4.4 4.4
Crystal Structure Diamond Diamond Zincblende Wurtzite
Density (gm/cc) 2.33 5.33 5.32 5.606
Dielectric constant 11.9 16 13.1 8.3
Electron affinity (eV) 4.1 4.0 4.1 4.29
Band gap at 300K (eV) 1.12 0.66 1.42 3.3
Excitonic binding energy (meV) 14 2.7 4.2 60
electron meff (×me) 0.98 1.64 0.067 0.27
hole meff (×me) 0.16, 0.49 0.044, 0.28 0.082, 0.45
Effective density of states in CB 2.8×1019 1.04×1019 4.7×1017 4.8×1018

NC(cc−1) at 300K
Effective density of states in VB 1.04×1019 6.0×1018 7.0×1018 4.8×1018

NV (cc−1) at 300K
Intrinsic carrier concentration 1.5×1010 2.4×1013 1.8×106 -
n(cc−1) at 300K
Intrinsic electron mobility) 1350 3900 8500 200
(cm2V −1s−1) at 300K
Intrinsic hole mobility 480 1900 400 50
(cm2V −1s−1) at 300K
Electron diffusion coefficient 35 100 220
(cm2s−1) at 300K
n-type Donors (ED meV) P(45) As(12) P(50) As(12.7) Se(5.9) Te(5.8) native

defects
p-type Donors (EA meV) B(45) Al(60) B(10.4) Al(10.2) Be(28) Zn(30.7) unknown

1.2 Fermi Level in an intrinsic (undoped) semiconductor

If the material is undoped, then all the electrons in the conduction band (CB) must have been thermally
excited from the valence band (VB). This fact is sufficient to tell us where (Ef ) should be. The electron
and hole densities are given by,

n =
∫ ∞

EC

D(E)f(E)dE (1.3)

p =
∫ EV

−∞
D(E)(1− f(E))dE (1.4)

Assuming parabolic CB and VB the dispersion relations can be shown to be given by,

Ee(k) = EC + ℏ2k2

2me
(1.5)

Eh(k) = EV −
ℏ2k2

2mh
(1.6)

where EC , EV denote the bottom and the top of CB and VB respectively. The density of states in
3D, including spin degeneracy is then given by:

D(E) = 1
2π2 (2me

ℏ2 )3/2(E − EC)1/2forE > EC (1.7)

D(E) = 1
2π2 (2mh

ℏ2 )3/2(EV − E)1/2forE < EV (1.8)
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To evaluate equations 1.3 & 1.4 we proceed as :

n = 1
2π2 (2me

ℏ2 )3/2
∫ ∞

EC

dE(E − EC)1/2 1
eβ(E−EF ) + 1

(1.9)

= 1
2π2 (2me

ℏ2 )3/2 1
β3/2

∫ ∞

0
du u1/2

eue−β(EF −EC) + 1
where u = β(E − EC) (1.10)

= 2 (2πmekBT

h2 )3/2( 2√
π

∫ ∞

0
du u1/2

eueβ(EC−EF ) + 1
(1.11)

Now we identify the integral within the brackets as a Fermi-Dirac integral, dened as :

Fj(z) = 1
Γ(j + 1)

∫ ∞

0
dx xj

ezex + 1 (1.12)

Further the ”effective density of states” in the conduction band is defined as

NC = 2(2πmekBT

h2 )3/2 (1.13)

Note however that the dimension of NC is not the same as D(E) . The electron and hole densities are
then given by,

n = NCF1/2(EC − EF
kBT

) (1.14)

p = NV F1/2(EF − EV
kBT

) (1.15)

The Fermi-Dirac integrals appear often in physics. They are tabulated as ”special functions”. We
can show that if EF is reasonably below EC, such that EF − EC

kBT
< −4 the integral is very closely

approximated by e
EF −EC

kBT . This is called the non-degenerate regime where the electron and hole
densities are given by

n = NCe
β(EF −EC) (1.16)

p = NV e
β(EV −EF ) (1.17)

For charge neutrality we must have ni = pi for undoped (intrinsic) semiconductors only. Multiplying
eqns 1.16 & 1.17 n2

i = nipi = NCNV e
−β(EC−EV )

ni =
√
NCNV e−βEg/2 (1.18)

Clearly the intrinsic carrier density falls rapidly with increasing band gap. We can compare the
result with the data in table 1.1. Note however that the product of the carrier densities is independent
of the location of the Fermi level even when n = p. This is a very important fact and allows us to
write

np = n2
i (1.19)

even when the source of the charges are dopants. In such cases (we will see in the next section) the
Fermi level moves away from its intrinsic position. The electron and hole densities can them become
vastly unequal - but they do so in such a way that the np product still remains the same. We now
solve eqns 1.16 & 1.17 for Ef and get the intrinsic Fermi level (Efi)

Efi = EC + EV
2 + 3

4kBT ln
mh

me
(1.20)

1.3 Fermi level in a doped semiconductor
We now come to the more practical situation, where there are dopants and ask: where is the Fermi
level? If there are dopants then n and p are no longer equal. In fact the number of carriers supplied
by ionised dopants can be several orders larger than the intrinsic carrier densities. The fundamental
point is that all the atoms of the host lattice and the dopants were initially neutral. But inside the
semiconductor there are now four sources of charge :

5



1. Negatively charged electrons in the conduction band (n)

2. Unoccupied (positively charged) ionised donor atoms (N+
d )

3. Negatively charged ionised acceptor atoms (N−
a )

4. Unoccupied states (holes) in the valence band (p)

The sum total of all these four must continue to be zero. To start with the valence band was
full and the conduction band was empty (intrinsic semiconductor at T = 0K), then we put in neutral
donor atoms (capable of giving out an electron) and neutral acceptor atoms (capable of capturing an
electron). So the sum total must remain zero. Thus if we can write down the carrier concentrations in
the conduction and valence band and calculate the fraction of dopants which are ionised (as a function
of Ef ) then we can have an equation where Ef is the only unknown. This is how one determines the
location of Ef

n+N−
A = p+N+

D (1.21)

We know how to calculate n and p as a function of Ef . What is the probability that a donor will
ionise? Resort to statistical physics to calculate the fraction N+

D/ND. The donor site (e.g Phosphorous
in Silicon) can exist in 4 states

1. lost its electron (charge = +1 , energy = 0)

2. occupied by a spin up electron (↑, charge = 0, energy = ED)

3. occupied by a spin down electron (↓, charge = 0, energy = ED)

4. occupied by one spin up and one spin down electron (↑↓, charge = -1 , energy = 2ED +U)

where "U" is the large repulsive energy cost of putting two electrons on the same site, making the
state very improbable.) The dopant densities are not very large compared to the density of atoms of
the host lattice. It is rarely more than 1 in 103 to 104. So we can treat each dopant atom in isolation
and the electron can be localised on the atom1. Each dopant can exchange electrons with the "sea"
of CB electrons. It is in equilibrium with a larger system (the Si lattice) and can exchange particles
with it - thus its temperature and chemical potential must be the same as that of the larger system.

The grand cannonical partition function for a single donor (with µ, the chemical potential set as
Ef ) is given by,

ZG =
∑
E

e−β(E−µN)

= e−β(0−0) + 2e−β(ED−Ef ) + e−β(2ED+U−2Ef )

≃ 1 + 2e−β(ED−Ef ) (1.22)

The mean occupancy (probability that the dopant is not ionised) is then,

1− N+
D

ND
= 1× P (↑) + 1× P (↓) + 2× P (↑↓)

= 2e−β(ED−Ef )

ZG

= 2e−β(ED−Ef )

1 + 2e−β(ED−Ef )

= 1
1
2e

−β(ED−Ef ) + 1
(1.23)

The fraction of ionised donors is
N+
D

ND
= 1

1 + 2e−β(ED−Ef ) (1.24)

1However, for high dopant densities then the dopant states will no longer be localised but form extended band of
finite width. This is known as "Mott transition".
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It is worth noting that the above equation indicates that the probability of ionisation of a donor
increases with increasing (ED − Ef ). For, ED = Ef the probability of ionisation is = 1

2 .
A similar expression for the fraction of ionised (negatively charged) acceptors is

N−
A

NA
= 1

1 + 4e−β(Ef −EA) (1.25)

The factor 4 is a result of the fact that the electron sitting on the acceptor could have come from
four possible places - spin up/down from heavy hole band, spin up/down from light hole band. The
split off band does not come into the picture because it is too far down.

One type of dopant only
If we neglect the valence band and the acceptors (which can be justified if only donors are present),
combining eqns we get

NCe
−β(EC−Ef ) = ND

1 + 2e−β(ED−Ef ) (1.26)

Ef is the only unknown in eqn and can be solved (numerically if required).

1.3.1 Thermal ionisation (Saha equation) of the dopant system

It is instructive to calculate the fraction of ionised dopants in another way. We can think of the
problem as a thermal ionization of bound states - in a way that is very similar to the method of
calculating the ratio of ionised to unionised atoms (of a certain species) in a hot plasma. We want to
find the "chemical equilibrium point" of the reaction:

dopant+ ionisationenergy ↔ ioniseddopant+ electron (1.27)

A certain fraction of atoms will exist in the dissociated state and a certain fraction will remain in the
undissociated state. The fraction which minimises the free energy of the entire system (at a certain
temperature) will be the equilibrium point. Taking this approach we can calculate the ratio N+
D=ND by minimising the free energy of the entire system of free electrons and the dopants. First we
write the free energy such that the free electron density n is the only variable.

Fsystem = Felectrons + Fdopants (1.28)

Now Felectron may be calculated as
Felectrons = kBT ln

zn

n! (1.29)

where, the single electron partition function z = ∑
e−βE = 2V/h3 ∫ d3pe

−βp2
2m = 2V (2πmkBT/h2)3/2.

Now since ND − n dopant sites are occupied we have for the internal energy (U) and entropy (S)

U = −∆(ND − n) (1.30)

S = kln(2ND−n ND!
n!(ND − n)! ) (1.31)

Fdopants = U − TS (1.32)

1.4 General Method of Solving for Ef

Consider a situation where a semiconductor is doped with ND donors and NA acceptors. We want
the general solution for the location of EF and all the carrier densities, ionisation probabilities. Since
the semiconductor is overall neutral we have using the charge neutrality condition

n+N−
A = p+N+

D (1.33)

NCF1/2(EC − Ef
kBT

) + NA

1 + gAeβ(EA−Ef ) = NV F1/2(Ef − EV
kBT

) + ND

1 + gDeβ(Ef −ED) (1.34)
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• here gA = 4 and gD = 2 are the acceptor and donor degeneracies. EA and ED are the acceptor
and donor levels.

• Since Ef is the only unknown here, we can plot the LHS and RHS by treating Ef as an inde
pendent variable. The position where they intersect must be the solution. Figure illustrates the
situation.

• Notice that Ef is temperature dependent.

• Once Ef is determined all the quantities can be determined. In general this cannot be done
analytically.

Figure 1.1: Plot of the LHS and RHS of Equation 1.34 as a function of Ef

1.5 Degenerate vs Nondegenerate Semiconductors
In the discussion on the effect of doping and the ensuing calculations, we have implicitly assumed that
the concentration of dopant atoms is much smaller in comparison to that of the parent semiconductor
atoms. These impurity atoms are sparsely distributed with large separation from each other, effectively
preventing any interactions or overlap of electronic wave functions. We’ve also assumed that these
impurities introduce discrete, non-interacting and localised donor energy levels within the n-type semi-
conductor (non-interacting acceptor states within the p-type semiconductor). Such semiconductors
are commonly referred to as non-degenerate semiconductors.

However, as the impurity concentration increases, the separation between these impurity atoms
diminishes, eventually reaching a point where donor electron wavefunctions overlap each other. There-
after, the single electron, discrete donor energy level begins to split into a band of energy levels. With
a further increase in donor concentration, this band of donor states widens and may even overlap with
the lower edge of the conduction band. These states which are added to the conduction or valence
bands are called bandtail states. Evidently, as a consequence of bandtailing, the bandgap narrows
and is observed in the absorption spectrum of heavily doped semiconductors. Bandgap narrowing
has important consequences in the operation of laser diodes. Here the EF lies within the expanded
conduction band and the material behaves like a metal, thus the system undergoes an insulator to
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metal transition and the carrier freeze out temperature of the semiconductor is lowered. Typically
this happens when ND ∼ NC (NA ∼ NV ). If ne NC the Fermi energy assumes a position within
the conduction band. Such a semiconductor is termed a degenerate n-type semiconductor and has
ND > 1020/cc. As a rule of thumb, for nondegenerate semiconductors the ED lies around kT/3 below
EC and the EF lies 3kT below the EC .

Carrier mobility (µ), discussed in Chapter 2 is the speed at which electrons and holes can move
through the material, which in turn affects the device performance. Higher carrier mobility leads to
faster device switching speeds and higher current densities and lower carrier mobility may lead to
slower switching speeds and higher power consumption. In heavily doped semiconductors, µ is limited
by a number of factors, including scattering from dopants, phonon scattering, and impurity scattering,
all of which can lead to degradation of device performance.

1.6 Beyond the Bulk
From the last section we have understood the method of calculating the position of Ef as a function
of temperature and doping in bulk semiconductors. Assuming a semiconductor is n-type doped and
ignoring holes in the VB one can obtain an expression for charge density inside the semiconductor as
follows;

ρ = −e(n−N+
D ) = −eNCe

β(Ef −EC) −ND
1

1 + 2eβ(ED−Ef ) (1.35)

Further, this charge density is related to the electrostatic potential (V) by the Poisson equation;

∇2V = −ρ(r)
ϵrϵ0

(1.36)

where, the scalar potential is essentially the bottom of the CB. Within the bulk of a semiconductor the
potential and the charge density are in general homogeneous. However the situation vastly changes
at semiconductor surfaces or interface, especially at junctions.
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1.7 PROBLEMS

1. Calculate the density of states in 2D and 1D systems.

2. Consider an electron in a 1D lattice of lattice constant a. The energy levels are given by
ϵ(k) = −2T cos(ka). A small dc electric field E⃗ is imposed parallel to the lattice. Plot the
energy dispersion (E − k) diagram in absence of the field and write the equation of motion of
electrons. Obtain an expression for the time evolution of k and describe qualitatively the motion
of the electron in k-space and in real space in both the absence and presence of scattering. What
is meant by small E⃗ and what can happen in a real (multiband) crystal when E⃗ is no longer
small?

3. Show that the deviation of the electron density (n) from intrinsic density (ni) and the deviation
of Ef from the intrinsic Fermi level (Efi) are related as

n = nie
β(Ef −Efi) (1.37)

4. The effective masses of electrons and holes are different in a semiconductor. Discuss an experi-
ment that can determine the effective mass of electrons and holes in a semiconductor.

5. Show that for a semiconductor with only donor dopants, the carrier density can be obtained by
solving the following equation: (which is in turn obtained by using eqn)

n2 + nNC
e−β∆

2 −NDNC
e−β∆

2 = 0 (1.38)

where ∆ = EC − ED. Also show that the Fermi level may be obtained by solving

x2 + x
e−β∆

2 − ND

NC

e−β∆

2 = 0 (1.39)

where x = eβ(Ef −EC). If you put ND = 0 in either of the two equations you would get an
unphysical answer. Why is this so?

6. Consider an intrinsic semiconductor whose electronic density of states N(E) is plotted in the
figure 1.2. Show that the Fermi level is given by the expression EF = (EC + EV )/2, where EC
and EV are the conduction and valence band edges. Estimate the density of conduction band
electrons at room temperature. n0 is the number density of electron states .

7. In a system with ND donors and ND acceptors, N+
D donors and N−

A acceptors are ionised. Each
donor (acceptor) level has a degeneracy of gD (gA). There are n electrons in CB and p holes in
VB. (In general gD = 2, but gA may be different from 2.). Then

N+
D = ND

(gDn/NC)eβ(EC−ED) + 1
(1.40)
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Figure 1.2: Density of States

And the corresponding result for the acceptors:

N−
A = NA

(gAp/NV )eβ(EA−EV ) + 1
(1.41)

Here NC and NV are the conduction and valence band effective density of states. Notice that
Ef does not appear in these relations. A semiconductor may be doped with both (acceptors and
donors) types of dopants. In a situation where there are a large number of donors and a few
acceptors (i.e ND ≫ NA), how would the eqn in the previous problem be modified?

8. Determine the temperature at which 90 % of the Boron acceptor atoms in p-type Si are ionized.
(given NA ∼ 1016/cc).

9. Minimise Fsystem = Felectrons + Fdopants w.r.t n, using Stirling’s approximation for factorials as
needed and show that you get exactly the same result as eqn. This is essentially a variant of the
"Saha ionisation" equation, applied to a situation where the atoms and ions are not mobile, but
only the electrons are.
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2

Electrical Transport

Before we delve into electrical transport i.e. motion of electrons in matter, lets revisit the system in
which the abundance of electrons is the most obvious, metals.

2.1 What are metals?

• More than 2
3 of elements in the periodic table are metals.

• Metals occupy the left hand side of the periodic table. Atoms with noble gas core + loosely
bound outer electrons.

• Metals form crystal structures with large number of nearest neighbours

• Metals have large interatomic distances but small ionic radii. Thus leaving large volumes for the
conduction electrons to swim around.

Figure 2.1: Periodic table of elements showing metals, mettaloids and non-metals

2.2 The Drude Model

The Drude model predates the quantum theory and was developed at the turn of the 20th century by
Paul Drude, a few years after J.J. Thompson discovered the electron in 1897.

Assumptions

1. Electron "ideal gas" permeates the fixed crystal lattice composed of core ions.

2. Collisions between e’s and ions are instantaneous, uncorrelated events.
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3. All other interactions (i.e. long range potentials of other ions or e− e interactions) are neglected
except externally applied fields.

4. Electrons travel in straight lines between scattering events.

5. The average time between subsequent collisions of such an electron is τ . Probability of an
electron having a collision in a time interval dt is dt/τ . τ does not depend on the electron
position or momentum.

6. Collisions "thermalise" electrons and restore equilibrium with lattice.

Density of conduction electrons.

In Sodium (Na) the density of conduction electrons, n is:

n = NA
Zcρm
A

= 6.02× 1023atoms/mol
1e/atom · 1× 106g/m3

29g/mol = 2× 1028/m3 (2.1)

where NA is Avogadro’s number, ρm is the density of the metal, A is the atomic number of the element
and the numbers are for Na.

2.2.1 Equations of motion

The first thing you need is to figure out how an electron’s momentum, on average, will evolve over
time. To do this we’ll just find the average equation of motion for an electron. To find this let’s start
with the momentum of an electron at time t, p⃗(t), and find it at time t + dt. If the electrons had
a collision it would on average have no momentum (p⃗c(t + dt) = 0) at time t + dt and by the third
assumption above this has the probability, Pc = dt/τ . This means that the probability of no collision
is Pnc = (1 − dt/τ) this is because Pc + Pnc = 1. If there were no collision the electrons would have
evolved normally and the electrons momentum becomes, p⃗nc(t+dt) = p⃗(t)+ F⃗ (t)dt. Thus the average
value of the electrons momentum after time dt is,

p⃗(t+ dt) = Pc · p⃗c(t+ dt) + Pnc · p⃗nc(t+ dt) = (1− dt

τ
)[p⃗(t) + F⃗ (t)dt] (2.2)

The above can be unscrambled to give,

d

dt
p⃗(t) = p⃗(t+ dt)− p⃗(t)

dt
= − p⃗(t)

τ
+ F⃗ (t) (2.3)

And you have the equation of motion (EoM) averaged over electrons.
Of note there are a few regimes and solutions to consider.

• If F⃗ (t) = 0 the solution to this homogeneous equation is p⃗(t) = p⃗(0)e−t/τ which is why τ is
called the relaxation time. If you impart momentum to the electrons on average they will relax
back to no momentum exponentially with a time constant τ

• With a constant F⃗ e.g. a dc electric field you can show that the solution to the momentum
p⃗(t) = p⃗(0)e−t/τ + F⃗ τ

• After a long time, t≫ τ , the exponential term becomes negligible leaving p⃗(t) = F⃗ τ

2.2.2 Ohm’s law and dc Conductivity

V = IR (2.4)

V is the Voltage applied across the metal, I is the resulting current, and R is a proportionality
constant. Recasting the equation in geometry independent form, we get

j⃗ = σE⃗ (2.5)
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where σ is the conductivity of the metal and j⃗ is the current density, i.e. j⃗ = 1/nev where n is the
electron density, e the electron charge, and v is the average drift velocity of the electrons. In an applied
electric field E⃗ the EoM for t≫ τ , gives us p⃗(t) = eE⃗τ and v⃗(t) = eE⃗τ

m .

=⇒ j⃗ = ne2τ

m
E⃗ (2.6)

which is Ohm’s law with σo = ne2τ/m (the dc conductivity). For a metal like Na with a resistivity,
ρNa = 1/σo = 50 nΩ· the relaxation time is ∼ 10−14 s. The dc conductivity is also expressed as
σo = neµ where µ is the carrier mobility =eτ/m

2.2.3 ac Conductivity

For an oscillating E-field (E⃗(t) = Re{E⃗(ω)eiωt}) Ohm’s law takes the form

j⃗(ω) = ne2τ

m

1
iωτ + 1E⃗(ω) (2.7)

where the ω dependent conductivity is given by

σ(ω) = σo
iωτ + 1 (2.8)

If the electric field originates from an incident EM wave e.g. incident light, the response of the system
will then be given by Maxwell’s equation of the form,

∇⃗ · E⃗ = 0 ∇⃗ · B⃗ = 0

∇⃗ × E⃗ = −dB⃗
dt

∇⃗ × B⃗ = µ0j⃗ + µ0ϵ0
dE⃗
dt

Inserting the expression for j⃗(ω) and E⃗(t), the last equation then reads as

∇⃗ × B⃗ = (µ0σ(ω) + iωµ0ϵ0)E⃗

Curl of the third equation then leads us to,

∇⃗ × ∇⃗ × E⃗ = −∇⃗2E⃗ = d∇⃗ × B⃗
dt

= iω(µ0σ(ω) + iωµ0ϵ0)E⃗

After some rearranging this can be written as

−∇⃗2E⃗ = ω2

c2 ( iσ(ω)
ωϵ0

− 1)E⃗ (2.9)

Now notice that if you take the limit where ωτ ≫ 1, σ(ω)→ σ0/iωτ leaving us with

−∇⃗2E⃗ = ω2

c2 ( ne2

mϵ0ω2 − 1)E⃗ (2.10)

Assuming that the electric field has a plane wave spatial structure (i.e. E⃗(t) = Re{E⃗(ω)eiωteik⃗·r⃗})1

then the above equation simplifies to the dispersion relation,

k2c2 = (ω2 − ω2
p)

with ωp = ne2/mϵ0 being the plasma frequency.
This dispersion relationship tells us that k is imaginary for ω < ωp which is the result for an

exponentially decaying electric field. This means that the EM wave doesn’t propagate into a metal
for frequencies ω < ωp but are instead reflected. On the other hand for ω > ωp it yields a real k
which is the form for a travelling wave. This implies that for frequencies higher than the plasma
frequency metals become transparent. For metals the plasma frequency is in the ultra violet, e.g. for
Na ωp = 1015s−1 which corresponds to a wavelength of λ 200nm.

1Direct magnetic field effects are neglected since they are much smaller than the electric field forces.
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2.2.4 Thermal conductivity

The electrons in a metal aren’t just good conductors of electricity, they are also good at conducting
heat. So we’re asking about the amount of heat that travels along a sample of metal as heat is applied.
There is a simple phenomenological model that is analogous to Ohm’s law, it is called Fourier’s law
and it looks like:

j⃗q = −κ∇⃗T
The minus sign is because heat flows to lower temperature, and j⃗q is the heat current density
∆Q/Time·A, heat per time per area in units of [Watts/m2] and κ is the thermal conductivity which
has units of [Watts/mK]. So what does the Drude model predict?

A couple of assumptions are important here. First we need to remember the last assumption of
the Drude model. This assumption means that after a collision an electron carries the thermal energy
of the local environment. Also we need to assume that T varies a little over l (the mean free path
electrons travel before scattering).

To calculate the heat delivered to a point we need to simplify this to a 1-D problem and then we
need to calculate the heat it gets from the left and subtract the heat it gets from the right. Let’s write
the thermal energy an electron at temperature T has as E(T ). Then at a point x the average electron
coming from the left brings with it an energy E(T [x− vτ ]) the average electron from the right delivers
E(T [x + vτ ]). So for electrons of density n and average velocity v (remembering that half will travel
towards the point x and half away) this leaves us with

j⃗q = 1
2nv{E(T [x− vτ ]− E(T [x+ vτ ]}

j⃗q = 1
2nv( dE

dT
)(−dT

dx
)2vτ

j⃗q = nv2τ( dE
dT

)(−dT
dx

)

Now note a few things n dE
dT = N

V
dE
dT = 1

V
dE
dT = cV or the specific heat per volume. Also when we

generalize to 3-D we note that < v2
x >=< v2

y >=< v2
z >= 1

3 < v >2. Putting all this together we have

j⃗q = < v >2 τ

3 cV (−∇⃗T )

So the prefactor up there is equal to the thermal conductivity.
There is another way to look at the specific heat. It’s called the Wiedemann-Franz ratio. Which

is given by
κ

σT
= m < v >2 τcV

3e2

Now in a classical gas using the equipartition theorem the total thermal energy per volume is given
by E = n3

2kBT so the specific heat per volume (the derivative of the energy with respect to energy)
is cV = n3

2kB. And also note that the total thermal energy is the kinetic energy is given by 1
2m <

v >2= n3
2kBT which we can use to get rid of the m < v >2 in the W-F ratio. All together this gives

κ

σT
= 3

2(kB
e

)2 = 1.11× 10−8(WΩ/K2)

This number only has fundamental constants in it and it is 1/2 the real value you get experimentally.
But is really close for such a simple model.

Having calculated the equilibrium local charge density in doped systems we now address the issue
of electrical transport in such devices. The Boltzmann Transport equation (BTE) allows us to take
a step out of equilibrium thermodynamics. In general the concept of equilibrium implies that there
is no net particle flow from one point of a system to another. An equivalent statement is that the
electrochemical potential is same throughout the system. Yet, in reality, all electrical devices have
currents flowing through otherwise it wouldn’t be interesting at all. Importantly, some effects of
current flow are irreversible -like Joule heating. We will see how the presence of electro-magnetic
fields, electrochemical potential gradients and thermal gradients drive current. We will do so by
calculating a distribution function in a situation driven slightly away from equilibrium. Our main
target is derive analytic expressions for current in the presence of external fields.
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2.3 The Boltzman Transport Equation

Let’s consider the 6-dimensional phase space of two canonically conjugate co-ordinates r and p per-
taining to the position and momentum of the free quasi particles in a solid. The probability of dN
molecules which all have r and p within d3rd3p is a function f which gives this probability per unit
phase-space volume, or probability per unit length cubed per unit momentum cubed, at an instant of
time t. This is a probability density function: f(r, p, t), defined so that,

dN = f(r,p, t) d3r d3p (2.11)

What happens to the points in the "volume element" after some time has elapsed? Unless the electrons
are scattered they change their co-ordinates according to the following rule:

r(t+ δt) = r(t) + p

m
δt (2.12)

p(t+ δt) = p(t) + Fδt (2.13)

Thus at time t+ δt we can write;

f(r(t) + p

m
δt,p(t) + Fδt)d3r′d3p′ = f(r(t), p(t), t)d3rd3p (2.14)

The volume element around the point distorts, but preserves its volume. Something that was a square
at time t, may become a parallelogram at t+ δt. This would happen if the external force conservative
i.e. is derivable from a potential. Now the time derivative of the distribution function may be written
as

df

dt
= p
m
.∇rf + F.∇pf + ∂f

∂t
= 0 (2.15)

Now we take another step, to convert this classical equation into a semiclassical one. We change
momentum to wavevector. This indeed means that we are using the concept of phase space (simul-
taneously defined momentum and position) in quantum mechanical scenario. An analysis of how far
this can give correct results, is non-trivial. For carriers in a ’band-solid’ the semiclassical dynamics of
a wavepacket are described by the equations

dr
dt

= vn(k) = 1
ℏ
∇kEn(k) (2.16)

dk

dt
= q

ℏ
E(r, t)− q

ℏc
vn(k)×B(r, t) (2.17)

where, n is the band index and En(k) is the dispersion relation for the band n. The wavevector is k
(ℏk is the ‘crystal momentum’), and En(k) is periodic under k → k + G, where G is any reciprocal
lattice vector. With these inputs the semi-classical version of df/dt is given as;

df

dt
= dr
dt
.∇rf + dk

dt
.∇kf + ∂f

∂t
(2.18)

In the absence of collisions, the distribution function must satisfy the continuity equation in the phase
space,

∇rk.(uf) + ∂f

∂t
= 0

where u are the (ṙ) and (k̇), and ∇rk are the six component gradient in the phase space namely ( ∂
∂x ,...,

∂
∂kx

,....). Further since the phase space flow is incompressible since En(k) is independent of r, in the
absence of collision the continuity equation takes the form

u.∇rk(f) + ∂f

∂t
= 0 (2.19)

.
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2.3.1 Collisions - Relaxation Time Approximation

In the presence of collisions the equality df/dt = 0 fails to hold and the amount by which it to
hold, must be attributed to collisions. Collisions, as in the Drude model holds the key to restoring
equilibrium of the system once it is disturbed. Say f0(r, k, t) is the equilibrium distribution function
and when it deviates from equilibrium, a “restoring effect” arises in the system, that tries to push the
distribution back towards equilibrium. This modifies the continuity equation to include the restoring
effect of collisions

df

dt
= dr
dt
.∇rf + dk

dt
.∇kf + ∂f

∂t
= df

dt
|collision (2.20)

The above is the semiclassical form of the Boltzmann Transport Equation. Its crucial departure from
the basic phase space continuity equation is the inclusion of the collision term, which in general may
be a function of r, k, t. The RHS of the above equation may be modelled via varrious schemes. One
straightforward sche is the relaxation time approximation, where;

df

dt
|collision = −f − f

0

τ
(2.21)

f0(r, k) is a static distribution function which describes a local equilibrium at r. The quantity τ(k)
is the relaxation time, which is allowed to be energy-dependent and may be determined in terms of
various scattering mechanisms systems. The best justification of the relaxation time approximation is
that it works in many cases! With these inputs, the semiclassical version of the BTE is given as,

dr
dt
.∇rf + dk

dt
.∇kf + ∂f

∂t
= −f − f

0

τ
(2.22)

In moving forward we assume;

1. External fields are sufficiently weak

2. Interband transitions are neglected - we drop the band index n. They neglect, for example,
Zener tunneling processes in which an electron may change its band index as it traverses the
Brillouin zone.

3. Neglect spin-orbit interactions

4. f has no explicit time dependence, ∂f
∂t = 0

5. ∇rf = 0, which in general means that there is no density gradient of particles across the system.
This assumption is correct if we are dealing with a piece of copper wire at constant temperature,
but not necessarily true for systems with a thermal gradient.

We will assume that the charge of each particle is “q”. For the most common case of electrons in
the conduction band we would need to put q = -|e| to get the correct sign of the terms.

2.3.2 Electric field only

With these assumptions, the BTE in the presence of only an electric field reduces to

q

ℏ
E.∇kf = −f − f

0

τ
(2.23)

Assuming that the change to the distribution function, under the action of the E field is small, we
make the first order approximation by taking the derivative around the equilibrium value, f0,

f(k) = f0(k) + δf = f0(k)− qτ

ℏ
E.∇kf0 (2.24)

= f0(k − qτ

ℏ
E) (2.25)

This means that the equilibrium distribution function has retained its functional form but just got
shifted by a certain amount. Think of how the graph of a function f(x) would be related to f(x− a).
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In the figure we have drawn it for a Fermi distribution in 2 dimensions. Note that if the relaxation
mechanism is strong then τ would be small. On the other hand if the particle suffers very little
scattering then τ would be large and the displacement of the Fermi circle (or sphere) would also be
large. Our target is to calculate the current produced by this state:

j = q
∑

k
vδf

= 2q
(2π)3

∫
d3kvδf (2.26)

Consider the equilibrium Fermi distribution, which is a space-independent and time-independent so-
lution to the Boltzmann equation.

f0(k) = 1
eβ(E(k)−µ) + 1

(2.27)

In general however, since collisions act locally in space, they act on short time scales to establish
a local equilibrium that may be described by a distribution function,

f0((r, k, t)) = 1
eβ(r,t)(E(k)−µ(r,t)) + 1

(2.28)

This is, however, not a solution to the full Boltzmann equation due to the ‘streaming terms’ r.∂r and
k.∂k.

Here we will neglect any time and spatial dependence of µ (=Ef ) and β and calculate δf .

∇kf0 = −( 1
eβ(E−Ef ) + 1

)2eβ(E−Ef )∇kβ(E − Ef )

= −βf0(1− f0)∇kE
= −βf0(1− f0)ℏvg (2.29)

Note that Ef is not a function of k. The above equation can also be written as,

∇kf0 = ∂f0

∂E
ℏvg (2.30)

Thus we get δf as
δf = qτβf0(1− f0)E.vg (2.31)

Notice that the change occurs only near the Fermi surface. This is the generic reason phenomena like
electrical or heat conduction are often referred to as a ”Fermi surface property”. Now we calculate the
current as dened in eqn A.10

j = q

4π3

∫
d3kvg

(
qτβf0(1− f0)E.vg

)
= nq

( q

4π3n

∫
d3kτvg ⊗ vg

(
− ∂f0

∂E

))
.E (2.32)

Notice that the part within the large brackets is determined by equilibrium properties of the system
only. The outer product (⊗) of two vectors is an object with two indices and can be written out like
a matrix. For example

C = A⊗ B =⇒ Cij = AiBj (2.33)

We will call the quantity inside the bracket as mobility. But it is often not necessary to evaluate this
is full generality. We assume that the dispersion relation is spherically symmetric and evaluate the
expression for low temperature. Low temperature implies that the Fermi distribution has a sharp
drop near Ef and behaves like a step function at that point. The derivative of a step function is a
(Dirac) delta function which would pick out the contribution of the integrand around its peak. So we
can write

lim
T→0
−∂f

0

∂E
= δ(E − Ef ) (2.34)
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Let’s go through the steps for evaluating the mobility integral:

←→µ = q

4π3n

∫
d3kτvg ⊗ vg(−∂f

0

∂E
) (2.35)

= q

n

∫
dED(E)τvg ⊗ vg(−∂f

0

∂E
) (2.36)

= q

n

∫
dED(E)τvg ⊗ vgδ(E − Ef )asT→ 0 (2.37)

Now since vg = ℏk/m, we can write:

µij = q

n

∫
dED(E)τ

( ℏ
m

)2
kikjδ(E − Ef ) (2.38)

This form works in all dimensions, provided the density n is interpreted correctly. Now µij will average
to zero if i ̸= j, due to symmetry. If we fix ki, we can find corresponding pairs of points at kj and −kj ,
which will add up to zero. So we need to calculate only the diagonal terms. Since there is nothing
to distinguish the x, y or z directions, all the diagonal components must be equal. This allows us to
write:

µii = q

n

∫
dED(E)τ( ℏ

m
)2k

2
x + k2

y + k2
z

3 δ(E − Ef )

= q

3n

∫
dED(E)τ 2E

m
δ(E − Ef ) (2.39)

Using the expression for density of states in 3D, eqn A.23 reduces to:

µii = q

3π2mn

∫
dEk3τδ(E − Ef )

= qτ

m
since k3

F = 3π2n (2.40)

The above treatment assumes that there is no explicit t dependence of f(k), and the solution is
obtained with ∂f

∂t = 0 i.e. a steady state is reached under the acion of the E field. Now say the electric
field was acting on the system and at time t = 0 it is turned off. Now the f(k) will relax back to
fo(k) and the corresponding equation is given by;

∂f

∂t
= −f − f

0

τ
(2.41)

Note that f(k) now has an explicit t dependence and given by the solution of the equation;

∂

∂t
(fo + δf) = −f − f

0

τ
(2.42)

Since ∂fo

∂t = 0 the solution of the above equation is given as δf(t) = δf(0) exp(−t/τ) where δf(0) =
− qτ

ℏ E.∇kf
0 = qτβf0(1− f0)E.vg. Thus the steady state distribution relaxes back to the equilibrium

Fermi distribution with a time constant τ .

Xtra: Temperature dependence of mobility and conductivity
The mobility is a temperature dependent quantity-the T dependence of conductivity for example arises
from changes in mobility as well as carrier density of a system. Usually scattering calculations give
us the scattering rate (τ(E)) or the collision cross section as a function of E . How do we use this
information to calculate µ(T ) . Let’s consider the diagonal element (say µxx) from equation A.15
which relates j and E

µij =
q
∫∞

0 dED(E)τ(E)vivj(−∂f
∂E )

n

µxx =
q
∫∞

0 dED(E)τ(E)v2
x(−∂f

∂E )∫∞
0 dED(E)f(E)
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Now if we are working in d dimensions, then in general we have

D(E) ∝ Ed/2−1

E ∝ mv2
x

d

2 (2.43)

Using these two results and a partial integration of the denominator we get:

µxx = 2q
md

∫∞
0 dEEd/2τ(E)(− ∂f

∂E )∫ 1
0 dE

Ed/2

d/2 (−∂f
∂E )

= q

m

∫∞
0 dEEd/2τ(E)∂f∂E∫∞

0 dEEd/2 ∂f
∂E

Since µ = qτ
m , we usually write,

⟨τ(T )⟩ =
∫∞

0 dEEd/2τ(E)∂f∂E∫∞
0 dEEd/2 ∂f

∂E
(2.44)

τ(E) is often available from scattering calculations and the integral gives the energy range over which
we need to average it. The presence of the term ∂f

∂E ensures that the important part is centred at
Fermi energy, the spread of the region increases with increasing temperature.

Xtra: Conservation of the phase space volume

We will apply the BTE to a situation where the ”forces” will have some velocity dependence, like the
Lorentz force. So let’s prove that the ”volume” will still be conserved. Part of the proof is left as an
exercise. We will work with two variables only for simplicity. Consider the points (x, p) and a small
area element δxδp around it as before. What happens to the corner points after time δt ? Both ẋ and
ṗ can be functions of x and p, but we do not write all the functional dependances explicitly. See the
following table:

point time = t time = t+ δt

1→ 1′ (p+ ṗδtx+ ẋδt)

2→ 2′ (x+ δxp) (x+ δx+ (ẋ+ ∂ẋ

∂x
δx)δtp+ (ṗ+ ∂ṗ

∂x
δx)δt)

4→ 4′ (p+ δpx) (p+ δp+ (ṗ+ ∂ṗ

∂p
δp)δtx+ (ẋ+ ∂ẋ

∂p
δp)δt)

2.3.3 Electric and Magnetic Field

Consider the case where an electric and magnetic field. The deviation of the distribution function
f(k) from its equilibrium distribution (f0(k)) should now read:

f(k) = f0(k)− qτ

ℏ
(E + v× B).∇kf0 (2.45)

Since the force term is k dependent, the solution for f(k) is not readily obtained by inspection, as was
done in the case for E field only. However, we now try a solution of the same form, with an unknown
vector Z. Our target is to write Z as a function of E and B, but free of k and vg. Thus we want Z,
such that

f(k) = f0(k− qτ

ℏ
Z) (2.46)

Hence,
δf = f(k)− fo(k) = −qτ

ℏ
Z.∇kf0 (2.47)

The BTE now becomes,

q

ℏ
(v× B).(∇k(f0 + δf)) + q

ℏ
E.∇k(f0 + δf) = −δf

τ
(2.48)
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We already know that ∇kf0 points along vg and hence the first term gives zero. Now comparing the
above 2 equations give us,

q

ℏ
(v× B).∇kδf + q

ℏ
E.∇kf0 = q

ℏ
Z.∇kf0 (2.49)

Now we need to calculate ∇kδf.

∇kδf = ∇k
qτ

ℏ
Z.∇kf0

= qτ

ℏ
∇k(−βf0(1− f0)Z.ℏvg)

= −βqτ((1− f0) (Z.vg)∇kf0 + f0(Z.vg)∇k(1− f0) + f0(1− f0)∇k(Z.vg)) (2.50)

Once again the first two terms in the RHS of A.33 will give zero when dotted with v× B as they are
∝ vg. The only term left is

∇kZ.vg = ∇kZ.
ℏk− qA

m
= ℏ
m

Z (2.51)

In eqn A.34, A denotes the vector potential of the magnetic field, vg is related to the canonical
momentum in presence of a magnetic field in the usual way. Combining eqns A.33 and A.34 we can
write:

(v× B).∇kδf = −βqτf0(1− f0)(v× B). ℏ
m

Z (2.52)

So eqn A.32 now simplies to:

− ℏ
m
βqτf0(1− f0)(v× B).Z + (E− Z).∇kf0 = 0

∴ − ℏ
m
βqτf0(1− f0)(v× B).Z + (E− Z)βf0(1− f0)ℏvg = 0

∴
qτ

m
(vg × B).Z + (E− Z).vg = 0

∴
qτ

m
(B× Z).vg + (E− Z).vg = 0

E = Z− qτ

m
B× Z (2.53)

We call Z as the Hall vector. When both E and B fields are present, this quantity in some way,
”replaces” the electric field in the transport equation. But we still need to express Z explicitly in
terms of E and B, with µ = qτ/m. The proof is left as homework.

Z = E + µB× E + µ2(B.E)B
1 + µ2B2 (2.54)

Continuing the similarity between Z and E further, we write the expression for current in presence of
a magnetic field by replacing E by Z,

j = σ0Z = nq2τ

m
Z = nqµZ (2.55)

A very general expression with arbitrary E and B can be written, but is not very useful. Rather, we
consider a situation where the magnetic field points along ẑ, and the electric field is in the xy plane.
So we have :

E = Exx̂ + Eyŷ
B = B0ẑ (2.56)

and hence:
Zx = Ex − µB0Ey

1 + µ2B2
0

Zy = Ey + µB0Ex
1 + µ2B2

0

22



Figure 2.2: Two device geometries commonly used in experiments with 2-dimensional systems

Eqn A.38 then can be written out in 2×2 matrix form as :(
jx
jy

)
= σ0

1 + µ2B2
0

(
1 −µB0
µB0 1

)(
Ex
Ey

)
(2.57)

Which can be inverted to give the resistivity matrix:(
Ex
Ey

)
=
(

ρ0
B0
nq

−B0
nq ρ0

)(
jx
jy

)
(2.58)

where we have written ρ0 for 1/σ0.
How do we relate the above to experimental situations? Consider a rectangular block in the xy

plane, with the current injecting contacts placed as shown. Sufficiently away from the contacts, the
current component jy must vanish, because there are no current sourcing/withdrawing contacts on
the long sides. This allows us to interpret the ratio Ex/jx as the longitudinal voltage drop and Ey/jx
as the Hall (transverse) voltage. The off-diagonal terms are linear in B and offers the most common
way of measuring the electron density in a 2-dimensional system.

It is important to understand that resistance or conductance can no longer be specied by a single
number in presence of a magnetic field. They must be understood in a matrix sense. In fact by
inverting the resistivity matrix you can easily show that in a magnetic field both σxx and ρxx can be
simultaneously zero, which appears counter-intuitive at first glance-but there is no contradiction in it.

2.4 Moments of the transport equation: Continuity & Drift-diffusion
Taking the moments of a differential equation means multiplying both sides of the equation with some
function and integrating over all states/space. How does that help? The integration “removes” some
variable and results in a simpler looking equation. Of course the “simpler” equation is no longer
as detailed or informative as the original one-but sometimes we may need focus on a broad feature
while removing some details. The BTE refers to the distribution function which is not always possible
(or necessary) to know. We show cases where focussing on quantities averaged over the distribution
f(r, k) is immensely useful.

2.4.1 Integrating the BTE over k space

Integrate/sum over all k states.
∂f

∂t
+ q

ℏ
(E + v× B)∇kf + v∇rf = df

dt

∣∣∣
collision

(2.59)

The first term in LHS gives ∫
d3k

(2π)3
∂f

∂t
= ∂n(r)

∂t
(2.60)

where n(r) is the conventional particle density at r. The second term in LHS can be written as,2

(E + v× B).∇kf = ∇k.f(E + v× B)− f∇k.(E + v× B) (2.61)

The integral of ∇k.f(E + v × B) can be converted to a surface integral. With the fields independent
of k, the Fermi distribution ∼ e−k2 3, and the surface growing as k2 this integral will vanish. Integral
of f∇k.(E + v× B also goes to zero, as seen below.

∇k.(E + v× B) = ∂Ei
∂ki

+ ϵijk
∂

∂ki

∂E
∂kj

Bk

= 0 + ϵijk
∂2E
∂kikj

Bk

= 0 + 0 (2.62)
2use vector identity. A.∇f = ∇.fA − f∇.A. f is a scalar and A is a vector.
3FD → MB distribution for large k
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Now, integral of the third term in LHS of equation 2.55 is∫
d3k

(2π)3 v.∇rf = ∇r.

∫
d3k

(2π)3 vf

= ∇r.n(r)⟨v⟩ (2.63)

The RHS of equation 2.55 must give zero when integrated over all k-space because the particles which
are scattered out of a certain volume must be appearing in some other volume. Thus the integral of
the BTE over all k-space yields,

∂n(r)
∂t

+∇r.n(r)⟨v⟩ = 0 (2.64)

Which is nothing but the expected continuity equation.

2.4.2 Drift-diffusion equation

Multiply both sides of the BTE by velocity (or momentum) and integrating over all states. Lets
consider a 1D BTE with an electric field only. The 3D case with both electric and magnetic fields will
follow.

∂f

∂t
+ q

ℏ
E
∂f

∂k
+ v

∂f

∂x
= −f − f

0

τ
(2.65)

multiply by v and integrate over all k. The first term in the LHS gives:∫
dk

2πv
∂f

∂t
=
∫
dk

2π
∂

∂t
fv = ∂

∂t
n⟨v⟩ (2.66)

With v = ℏk
m , the second term in LHS gives:∫

dk

2πv
∂f

∂k
=
∫
dk

2π ( ∂
∂k
fv − f ∂v

∂k
) = fv|∞−∞ −

ℏ
m
n (2.67)

The third term in LHS gives: ∫
dk

2πv
2∂f

∂x
= ∂

∂x

∫
dk

2πv
2f = ∂

∂x
n(x)⟨v2⟩

= ∂

∂x
n(x)

〈2E
m

〉
= kT

m

∂n(x)
∂x

(2.68)

Note the use of thermal average kinetic energy from the classical MB distribution in the last step.
This will ultimately lead to a relation between mobility and diffusion constant.
The RHS term:

−
∫
dk

2πv
f − f0

τ
= 1

τ

∫
dk

2πfv

= 1
τ
n⟨v⟩ (2.69)

Reassembling the four integrals together and multiplying with τ and q allover we get:

qτ
∂

∂t
n⟨v⟩+ qn⟨v⟩+ q2τ

ℏ
E
(
− ℏ
m
n
)

︸ ︷︷ ︸
drift term(µ= qτ

m
)

+ qτ
kT

m

∂n(x)
∂x︸ ︷︷ ︸

diffusion term(D= τkT
m

)

= 0 (2.70)

qτ
∂

∂t
n⟨v⟩+ qn⟨v⟩+ nqµE︸ ︷︷ ︸

drift current

+ qD
∂n(x)
∂x︸ ︷︷ ︸

diffusion current

= 0 (2.71)

where D is the diffusion constant and the ratio D
µ = kT

q , is called the Einstein relation. This is
correct for a classical distribution and applicable to degenerate semiconductors only. Notice ℏ has
disappeared, another indication that the result is essentially classical. The relation between drift
and diffusion components would be different if full Fermi-Dirac distribution used. However at room
temperatures in most devices this holds well for motion of electrons/holes in a band. The values of D
are thus readily obtained from the mobility values.
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Figure 2.3: Variation in mobility of Si with dopant density.

Drift diffusion in 3D
Removing the simplifying assumptions and take the moment of the BTE after multiplying with v. We
need to work with

∫
d3k

(2π)3 v
∂f

∂t︸ ︷︷ ︸
LHS1

+ q

ℏ

∫
d3k

(2π)3 v(E + v ×B).∇kf︸ ︷︷ ︸
LHS2

+
∫

d3k

(2π)3 vv.∇rf︸ ︷︷ ︸
LHS3

= −
∫

d3k

(2π)3 v
f − f0

τ
(2.72)

The complete calculation can proceed along the following lines. Prove the following results. The
relation between velocity and the wavevector is mv = ℏk− qA
1. LHS 1 : This gives

∂

∂t
n(r)⟨v⟩

2. LHS 2 : Notice the occurrence of the averaged velocity in the Lorentz term. The calculation is
somewhat non-trivial. Do it carefully! You should get

− q

m
n(r)(E + ⟨v⟩ × B)

3. LHS 3: The diffusion term requires averaging over the distribution. You should get

∇r.n(r)⟨vivj⟩

For Maxwell-Boltzmann distribution ⟨vivj⟩ = kT

m
δij

4. RHS : This gives the current term
−n(r)⟨v⟩

τ

Adding all the results will give the drift diffusion relation.

2.5 Thermal and Electrochemical Gradients

The preceding sections may give you the impression that current (particle ow) must be associated
with response to electric or magnetic field. This is not true as was seen in the context of the diffusion
current term. There are also very striking instances where there is a strong electric field but no charge
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flow. Also at the end of this section we will be able to answer the question - what does a voltmeter
measure? We have more or less got accustomed to the idea that connecting a voltmeter between two
points would measure the line integral of the electric field ("potential difference") between the points.
While this is indeed true in many circumstances there are situations where it is not. For example if you
look near the surface of a metal or a semiconductor or a pn junction you will find very strong electric
field at equilibrium. But a voltmeter connected between the surface of a metal and somewhere inside
would give zero. So would a voltmeter connected across a p-n junction in equilibrium. The purpose of
this section is to show that particle flow is ultimately related to the gradients of the “electrochemical
potential" (Fermi level) and thermal gradients in the system. It is an important conceptual point for
treating electrons moving in conduction band of a semiconductor that may have spatial variation due
to changes in composition or effects of accumulated charges or external gates.

So let us consider a general case where the equilibrium distribution function changes in response
to external stimuli. To obtain a solution to the BTE we write;

dr
dt
.∇rf + dk

dt
.∇kf + ∂f

∂t
= −f − f

0

τ
with
f(r, k, t) = f0(r, k, t) + δf(r, k, t)

Assuming that the collisions acting locally on a short time scale establish local equilibrium(s) we can
write a local form of the distribution function as,

f0(r, k, t) = 1
eβ(r,t)(E(r,k)−µ(r,t)) + 1

4 (2.73)

Assume µ = µ(r), T = T (r), E = E(r, k) and neglect any explicit t dependence we can compute δf0

as,

df0 = kT
∂f0

∂E
d(E − µ

kT
) (2.74)

= kT
∂f0

∂E
{ dE
kT
− dµ

kT
− E − µ

kT 2 dT} (2.75)

= ∂f0

∂E
∇kE︸ ︷︷ ︸

∇kf0

.dk−∂f
0

∂E
{−∇rE +∇rµ+ E − µ

T
∇rT}︸ ︷︷ ︸

∇rf0

.dr (2.76)

which along with the BTE yields δf0 as;

δf0 = −τ(vg.∇rf0 + q(E + v ×B)
ℏ

.∇kf0) (2.77)

which then yields the current density as;

j = − 2q
(2π)3

∫
d3kvg(τ(vg.∇rf0 + q(E + v ×B)

ℏ
∇kf0) (2.78)

= 2q
(2π)3

∫
d3k

∂f0

∂E
τvg{vg.(−∇rE +∇rµ+ E − µ

T
∇rT )− q(E + v ×B)

ℏ
.∇kE} (2.79)

= 2q
(2π)3

∫
d3k

∂f0

∂E
τvg{vg.(−∇rE +∇rµ+ E − µ

T
∇rT )− q(E + v ×B)

ℏ
.ℏvg} (2.80)

= 2q
(2π)3

∫
d3k

∂f0

∂E
τvg{vg.(−∇rE +∇rµ+ E − µ

T
∇rT ) + qvg.∇rϕ− q(v ×B).vg} (2.81)

(2.82)

4this function is not a solution of the BTE in equilibrium
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2.6 PROBLEMS
1. Starting with the expression for ac conductivity (Eqn 2.8), given by the Drude model derive

expressions for the real and imaginary components of the dielectric constant (ε(ω) = ε′(ω) +
ε′′(ω)) of a free electron system. Plot the components identifying the plasma frequency (ωp) of
the system. Discuss significance of the plasma frequency.

2. The free electron density in Copper is n = 8.5 × 1028m−3 and near room temperature the
relaxation time of most metals is of the order of 10-15×10−14 sec. From this data estimate the
fractional shift of the distribution on the scale of the Fermi wavevector (kF ) for an electric field
of 10V/m,(i.e. calculate ∆k/kF ).

3. Certain combinations of the Fermi function, occur very frequently in expressions that involve
scattering or transitions. It is useful to be familiar with the combination f0(1 − f0). Plot
f0(1− f0) as a function of energy. How does the area under the curve of f0(1− f0) vary with
temperature?

4. If E=Z–A× Z, then show that,
Z = E+A×E+(A.E)A

1+A2

Hint : Explore A×E and A.E.

5. Consider the "Corbino-disk" geometry shown in figure. Current flows between the inner (central)
contact and the outer (circumferential) contact. Show by symmetry arguments that one of the
components of the electric field (Ey in figure) must be zero. Can you roughly sketch the current
flow paths from the center to the circumference? Ref: Journal of Applied Physics 31, 2176
(1960); https://doi.org/10.1063/1.1735520

6. Invert the matrix in the equation ??. Call this the conductivity matrix whose elements are σij .
What will be the value of ρxx if σxx = 0, when no magnetic field is present? How would your
answer be modied when a finite strong magnetic field is present?
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3

Junctions

3.1 Metal-semiconductor junctions

From chapter 1 we know the following about doped semiconductors;
1. How to calculate the charge density, if we know the location of Ef . In a n-type semiconductor,

ignoring holes and acceptors, keeping the number of terms to a minimum, we have

n(x)−N+
D (x) = NCe

β(Ef (x)−EC(x)) −ND
1

1 + 2e−β(ED(x)−Ef (x)) (3.1)

ρ(x) = −|e|{n(x)−N+
D (x)} (3.2)

2. The charge density is related to the electrostatic potential (V) as

∇2V (x) = −ρ(x)
ϵrϵ0

(3.3)

3. The scalar potential is essentially the bottom of the conduction band.
4. In equilibrium Ef is constant, recall that current flow requires a gradient in the electrochemical
potential or Fermi level.

3.1.1 A Metal-Semiconductor Junction at equilibrium

Now let’s see how we can put this in practice – a (somewhat idealised) metal in contact with a
semiconductor, forming a M-S junction. The metal work function (φm) is the energy an electron
sitting at the Ef of the metal needs to escape from inside the metal to outside (vacuum level) and is
typically about 4 - 5 eV. It depends on which crystal face is considered and how clean the surface is.
Such effects are ignored here, hence the discussion is a bit idealised here. φs is the work function of
the semiconductor in question and the difference φC = |φm| − |φs| is the contact potential which we
assume to be positive.

The two objects are brought in contact, so that they can exchange electrons and establishing
equilibrium requires electron transfer from the semiconductor to the metal, which is energetically
favourable. However, in a semiconductor there are no electrons at Ef , but they transfer from the
bottom of the CB to the metal establishing thermal equilibrium across the entire system with EF same
on both sides. As the electrons transfer charge separation gives rise to an electrostatic potential - and
it is reasonable to expect that the bands would start bending in a way that would result in a barrier,
preventing further flow and establish equilibrium. At this point the metal and the semiconductor’s
Ef must be identical across the M-S junction. Applying these set of conditions produces the band
diagram shown in Fig. 3.1. The energy difference between the vacuum level and the bottom of the
CB, sufficiently deep inside the bulk is defined as the electron affinity (χs) of the semiconductor. Thus
once the M-S junction is formed and the CB edge bends the work done in transferring an electron
from the CB edge into the metal would be ϕm − χs, which is the work done in overcoming a barrier
of height ϕB = ϕm − χs and defined as the barrier height of the junction. Since deep in the bulk of
the semiconductor (where the surface should have no effect) the bottom of the CB is no longer bent
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Figure 3.1: (left) Band bending near the surface of a n-type semiconductor to metal contact (|φs| <
|φm|) (right) shows a calculated band bending for n-Si Au contact. Dotted line shows variation in
local electron density. Greg Snider (Notre Dam University)

and the Ef must continue to be separated by ϕs − χ, this dictates that the total bend in the CB of
the semiconductor is the built-in potential ϕbi.

ϕbi = ϕB − (EC − Ef ) = ϕB − kT ln NC

ND
(3.4)

As the figure (right) shows some charge has moved from the semiconductor to the metal. This
charge came from the dopants sitting considerably above Ef , closer to the junction. Equation 1.24
indicates that the probability of dopant ionisation ∝ (1 + 2e−β(ED−Ef ))−1, i.e. as dopant energy ED
is pushed above Ef then it must be ionised, because the electron cannot reside at a site sitting much
above Ef . The bands in the metal didn’t have to bend a lot to accommodate this extra charge, because
the density of states of a metal near Ef is very large.

To (numerically) solve eqns 3.1, 3.2 and 3.3 we can proceed as follows. 1. Since Ef is constant i.e.
independent of x, other energies can be measured relative to Ef , by setting Ef = 0.
2. The gradient of the scalar potential is the same as the gradient of the CB edge, EC(x)
3. We make a guess for EC(x) and use this to calculate the expected charge density by using eqns 3.1
and 3.2.
4. This calculated charge density should provides a new initial value for the potential via Poisson’s
equation (eqn 3.3).
5. We use this potential and go back to step 3.
6. The iterative process can continue till the change in two successive iterations becomes very small
(our convergence criteria)
7. Note: These differential equations are defined and solved only in the semiconductor and needs
proper boundary conditions. In the calculation of Fig. 3.1, we set the slope dEC/dx = 0 deep inside
the material i.e. as x → ∞ and EC = φB at x = 0 (the junction). Choosing the correct boundary
condition depends on the physical situation being addressed.

The above procedure can also be executed assuming an initial variation of the expected charge
density inside the semiconductor.

Either way having solved the above equation iteratively we can calculate some important param-
eters for the junction.
1. The Depletion width wd.

wd =
√

2ϵ0ϵr(ϕB − V )
qNd

(3.5)

2. The junction Capacitance Cj (per unit area).

CJ = |dQ
dV
| =

√
2qϵ0ϵrNd

2(ϕB − V ) = ϵ0ϵr
wd

(3.6)
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3. The Electric field at the junction Ej .

Ej = qNdwd
ϵ0ϵr

(3.7)

4. The φB is dependent on the metal semiconductor pair and the table lists the values for n and p type

Metal Mg Ti Cr W Mo Pd Au Pt
φm(eV) 3.7 4.3 4.5 4.6 4.6 5.1 5.1 5.7
φBn(eV) 0.4 0.5 0.61 0.67 0.68 0.77 0.8 0.9
φBp(eV) - 0.61 0.50 - 0.42 - 0.3 -

Table 3.1: Schottky barrier heights for electrons on n-type Si (φBn) and for holes on p-type Si (φBp)

Si with different metals. The sum of φBn and φBp is approximately equal to Eg of the semiconductor
(ESig ≃1.12 eV). Note that for a given semiconductor φBn increases with increasing φm, which is
commensurate with the relation φB = φm − χs.

3.2 p− n Junctions

The above process can be applied to p − n junctions as well to calculate band bending, the junction
field, depletion width and junction capacitance, as shown in Fig. 3.2. We take a closer look at the

Figure 3.2: Band bending at pn junction. The doping density ND and NA are lower in the left than
right figure. The junction becomes sharper and the EF moves closer to the dopant levels with increased
doping. Dotted line shows variation in local electron density. Greg Snider (Notre Dame University)

band diagram of a PN junction as shown in Fig. 3.2. The figure shows that Ec and Ev are not flat and
they are vertically displaced, across the junction indicating the presence of a voltage differential. The
energy (voltage) differential between the band edges across the junction is called the built-in potential,
ϕbi. A built-in potential is present at the interface of ANY two dissimilar materials. It is the ϕbi that
limits the initial diffusion current across a dissimilar junction. The energy difference of the CB edge
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from the equilibrium EF in the n and p side may be calculated as follows;

n− side : n(≃ ND) = NCe
−(En

C−EF )/kT =⇒ EnC − EF = kT ln NC

ND
(3.8)

p− side : n(≃ n2
i

NA
) = NCe

−(Ep
C−EF )/kT =⇒ EpC − EF = kT ln NCNA

n2
i

(3.9)

ϕbi = EpC − E
n
C = kT (ln NCNA

n2
i

− ln NC

ND
) (3.10)

ϕbi = kT ln NDNA

n2
i

(3.11)

ϕbi increases with NA and ND and is typically ∼ 0.9 V for a silicon pn junction. Comparison of the
two cases shown in Fig. 3.2 shows that with increasing doping (i) depletion width decreases, (ii) band
bending increases and (iii) the Fermi Energy moves closer to the dopant levels.

3.3 How realistic are these calculations?

We remarked at the beginning of this section that there are some idealisations. The work function of
a metal in reality depends on which crystal face we are using, how clean it is etc. This means that
if we deposit a thin film of a metal (say gold on silicon) on a semiconductor, we can’t really take the
values for a crystal of gold and clean silicon and predict what the barrier will be. Also the density of
states near the surface of a semiconductor is modied by the presence of surface states-which ultimately
mean that the Schottky barrier needs to determined experimentally. However the band diagram of
the barrier that we drew and the principles for solving the band-bending are sufficiently generic.

3.4 “Schottky” – “Ohmic"

In the previous section we considered the work function of the metal to be larger |φs| < |φm| and the
semiconductor to be n-doped. As a consequence some electrons flowed from the semiconductor to the
metal. What if |φs| > |φm|? To establish equilibrium electrons now flow into the semiconductor and
the ED and the CB edge now bends downwards towards Ef at the junction. Probability of ionisation
of dopants decrease as ED → Ef and remain unionised if ED ≤ Ef . The CB accommodates the
incoming electrons from the metal and if the CB edge dips below EF it creates an accumulation of
free electrons at the interface as shown in Fig. 3.3 1. The junction does not have any Schottky barrier
at all.

Figure 3.3: Band bending for metal-semiconductor Ohmic contacts when |φs| > |φm|

Real ohmic contacts

Ohmic contacts are low resistance junctions with linear IV characteristics (non-rectifying ) for sourc-
ing/draining current to semiconductors. In reality ohmic contacts on a semiconductor are made by
depositing an alloy that often contains one noble metal (Gold) and another element that can act as
a dopant. For example an alloy of Gold-Germanium is commonly used to make ohmic contacts to

1https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/devices/hetrojunction/
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n-type Gallium Arsenide. After depositing the alloy the sample is generally annealed (heated to a high
temperature) very rapidly so that the Germanium diffuses into the surface, heavily dopes the region
around it allowing the Gold to make a contact with no barrier. Enhancing local doping also decreases
the depletion width, which improves tunnelling probability through a barrier thus decreasing junction
resistance. The microscopic mechanisms of Ohmic contact formation are non trivial and significant
research is devoted to developing high quality contacts. Gold-Beryllium alloy can be used to contact
p-type Gallium Arsenide. Gold-Antimony alloy can be used to contact n-type Silicon.

3.5 Situations with varying Ef : what more is needed?
We noted earlier that the current is related to the gradient of the electrochemical potential (in a 1-
dimensional case) as

j = −n(x)µ d
dxEf (x) (3.12)

So we now have three variables to deal with-other than the charge density and the profile of the CB
edge. We also need to calculate the profile of Ef (x). We expect mobility (µ) to be a function of n.
In general the product nµ would increase with increasing carrier density, it doesn’t necessarily imply
that µ will be larger at higher densities. However at least in a 1-dimensional situation it is easy to
see that wherever nµ is large, dµ/dx must be small. This reminds us of what to expect if we apply
a voltage across a string of resistances (in series). The largest voltage drop must occur across the
largest resistance, because the current through each of them is constant. When the current flow is
very small we can approximate the situation by saying that all the drop in Ef must be across the most
resistive region (like a barrier) if we can identify one. This is however an approximation to get around
the fact that the variation of µ with n is in general a non-trivial and a system dependent problem.
In Fig. 3.1 we plotted the band diagram of a metal-semiconductor junction with no voltage applied
(Ef = constant). No current flows at equilibrium and the cross-over rates from both sides balance
each other.

Forward Bias

Figure 3.4: Approximate band bending near a forward biased metal-semiconductor junction. Dotted
line shows variation in local electron density. Greg Snider (Notre Dame University)

Now if the electron energies of the semiconductor is raised by connecting a negative potential (V )
to the semiconductor the relative band position across the junction are modified which is shown in
Fig. 3.4. The metal being at a higher potential net current flow from metal to semiconductor and
electrons in the reverse under FB. The EF are not equilibrium values but denote the difference in
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Figure 3.5: Basic transport processes under forward bias (1)Thermionic emission (2)Tunneling (3)
Recombination. (4) Diffusion of electrons (5) Diffusion of holes (Sze)

chemical potential of free electrons in either system away from the junction. Note the EF on either
side differ by the applied potential V .

• Fig. 3.5 shows the five basic transport processes under forward bias. (1)Thermionic emission
(2)Tunneling (3) Recombination. (4) Diffusion of electrons (5) Diffusion of holes

• Electrons that try to cross over from the metal to the semiconductor encounter a barrier ϕB and
is has low probability of crossover. A minority hole current from metal to semiconductor via
recombination and diffusion contributes to the overall forward current.

• Electrons crossing from the semiconductor to the metal now see a lower barrier than the unbiased
case and constitute a majority of the forward current via the thermionic emission and tunnel
current.

• Tunnelling probability through a barrier increases exponentially as the height of the barrier is
lowered. Js→m ∝ e−(φB−V )/kT

• Taking the difference of the left going and the right going currents to get the total current which
is the well known diode equation: J = J0(eeV/kT − 1), where J0, the reverse saturation current
density, determined by the height of the Schottky barrier given by, I0 = A0T

2e−ϕB/kT , where
A0 = 4πmk2qe

h3 = 1.20173× 106 A m−2 K−2 is the Richardson constant.

• Under FB: band bending and depletion width decreases, junction capacitance increases and the
junction field decreases.

Reverse Bias

Under reverse bias (RB) electron energies on the semiconductor side are lowered by connecting it to
a positive potential (or applying a negative potential to the metal), as shown in Fig. 3.6. Again the
drop in the electrochemical potential must happen predominantly over the depletion region and now
current flows from the semiconductor to metal and net electrons movement happens in reverse.

• Electrons which try to cross over from the metal to the semiconductor still see almost the same
barrier. The current that can pass through is Jm→s ≃ J0 = AT 2e−φB/kT

• But electrons that try to cross from the semiconductor to the metal now see a higher barrier
(∼ (ϕB + V )).

• Tunnelling probability through a barrier drops exponentially with the height of the barrier.
Js→m = AT 2e−(ϕB+V )/kT , where V is the voltage bias on the semiconductor w.r.t. the metal.
In this case V > 0. Remember that positive voltage bias lowers electron energies.
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Figure 3.6: Approximate band bending near a reverse biased metal-semiconductor junction. The
calculation has been done using a program written by Greg Snider (Notre Dame University)

• Thus under RB tunnelling + diffusion are two primary contributors to the net current flows
which is ≃ J0.

• Further, under RB: depletion width widens, junction capacitance decreases and the junction field
(E⃗J) increases. The increase is useful for separating e− h pairs thus increasing their lifetime.

Refer to the Chapters 2 and 3 of the book The Physics of Semiconductor Devices by S M Sze
for a more detailed discussion on the various transport processes across pn and metal-semiconductor
junctions.

• Schottky Diode: Transport across a diode is mathematically modelled in terms of the current
density as;

J(V, ϕB, T ) = J0(eeV/ηkT − 1) (3.13)
where η is the ideality factor, J0, the reverse saturation current density, determined by the
height of the Schottky barrier given by, J0 = A0T

2e−ϕB/kT , where A0 = 4πmk2qe

h3 = 1.20173 ×
106 A m−2 K−2 is the Richardson constant. Both J0 and η are functions of T and dopant density
as shown in the Fig. 3.7. For eV >> kBT the current density may be written as J = J0e

eV/ηkT

Figure 3.7: J0 versus ND and η versus ND at different temperatures for an Au-Si junction. (Sze)

which is used to linearise the equation as ln J = ln J0 + eV/kT . The intercept of a linear fit to
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the ln I vs. V plot in the high voltage regime gives ln I0 is used to determine the barrier height
at a particular T .

• pn Junction Diode: Transport across a pn junction diode is mathematically modelled in terms
of the current density J , given as;

J(T,Eg, V ) = J0(eeV/kT − 1) (3.14)

where J0 is the reverse saturation current density given as J0 = qn2
i (

Dp

LpND
+ Dn

LnNA
), where

ni =
√
NCNV e−Eg/2kT is the intrinsic carrier density, Ln and Lp are the e and h diffusion

lengths, Dn and Dp are the diffusion coefficients. The expression for J0 may further be simplified
to yield J0 ∝ T (3+γ)e−Eg/kT such that the IV characteristics is given by the Shockley equation;

I(V,Eg, T ) = AT (3+γ)e−Eg/kT︸ ︷︷ ︸
I0

(eeV/kT − 1) (3.15)

This idealised Shockley equation primarily gives qualitative agreement for most semiconductors
at low current densities. Note that the dominant T dependence of the diode equation is ascribed
to the exponential term rather than the T (3+γ) term. Thus the reverse current is determined by
exp(−Eg/kT ) and the forward current dominated by exp(−(Eg − V )/kT ).

3.6 Across the Barrier

The calculation of how many electrons can make it through the barrier at a metal semiconductor
interface is very similar to the way we calculate how many electrons a hot filament can emit. The
electrons in a metal can be effectively pictured as being inside a box with the outside world (vacuum
level) at a height ϕm above the Fermi energy of the metal and U above the bottom of the conduction
band of the metal. All energies are measured from the bottom of the conduction band, which is usual
for the free electrons. EF is Fermi level and hence ϕm = U − EF . This is the work function barrier
which keeps the free electrons from jumping out of the “box”.

• The electrons are in random motion and some of them will hit the boundary. Do they have
enough energy to come out? The potential barrier has to be finite for tunnelling to happen.
To be able to come out of the metal, the x component of the electron’s velocity should satisfy
mv2

x

2 > U

• How many such electrons will hit an area a (normal to the boundary) in time △t? This is
commonly calculated in kinetic theory of gasses. The total charge coming out is;

Q = e
2m3

h3

∫ ∞
√

2U/m
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz(avx△t)f(E) (3.16)

The factor 2m3

h3 comes from the density of states (k = mv/ℏ). Here f(E) is the Fermi dis-
tribution, but for high temperatures we can approximate it with the Boltzmann distribution
and hence f(E) ≈ e−β(2Ekin−EF ), where Ekin = 1/2(mv2

x + mv2
y + mv2

z). The integral can be
computed analytically to give,

J = Q

a△t
= 4πem

h3 (kT )2e−ϕm/kT (3.17)

The same reasoning is valid for a metal semiconductor interface though the work function will
be different, much less than the 4.5 eV or so, typical of a tungsten filament.

A similar calculation can be done for tunnelling electrons instead of thermionic emission. Fig. 3.8
shows the various currents under FB and RB condition and variation with dopant density and tem-
perature.
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Figure 3.8: (left) energy-band diagrams showing various currents (TE: thermionic emission, TFE:
thermionic field-emission, FE: field-emission) in a Schottky diode under forward and reverse bias.
(right) Ratio of tunnelling to thermionic current across a Au-Si diode. Tunnelling dominates at higher
doping and lower T (Sze)

3.7 Applications

3.7.1 Schottky Field Emission

In electron guns, the thermionic electron emitter is biased negative relative to its surroundings, which
creates an electric field of magnitude E at the emitter surface. Without the field, the surface barrier
seen by an escaping Fermi-level electron has height ϕm. The E lowers the surface barrier by an
amount (∆ϕ)E =

√
e3E/4πϵ0, and increases the emission current. This is known as the Schottky

effect (named for Walter H. Schottky) or field enhanced thermionic emission. It can be modelled by
a simple modification of the Richardson equation

J = Q

a△t
= 4πem

h3 (kT )2e−(ϕm−∆ϕE)/kT (3.18)

Electron emission that takes place in the field-and-temperature-regime where this modified equation
applies is often called Schottky emission. This equation is relatively accurate for electric field strengths
lower than about 108V/m. For electric field strengths higher than 108V/m, so-called Fowler-Nordheim
(FN) tunnelling begins to contribute significant emission current. In this regime, the combined effects
of field-enhanced thermionic and field emission can be modelled by the Murphy-Good equation for
thermo-field (T-F) emission. At even higher fields, FN tunnelling becomes the dominant electron
emission mechanism, and the emitter operates in the so-called cold field electron emission regime.

3.7.2 Tunnel Diode

Tunnel diodes, also known as Esaki diodes, are a type of pn junction diode that exhibit negative
differential resistance (NDR) in their voltage-current characteristic curve, Fig. 3.9(left). The
tunnel diode was invented by Leo Esaki in 1957 for which he received the Nobel Prize in Physics
in 1973. Tunnel diodes are unique devices that show a decrease in current with increase in voltage
in a limited voltage regime. Note that dI/dV < 0 but I/V > 0 in the specified voltage regime.
Tunnel diodes are extensively used in high-frequency circuits, oscillators, and microwave applications,
benefiting from their fast response times and frequency stability. In tunnel diodes, both the p and n
sides are degenerately doped such that their respective EF lie just within the band edge of the valence
and conduction bands. The equilibrium band structure of the diode, creating a narrow energy barrier
within the bandgap is shown in Fig. 3.9 (right).

• Above the EF there are no filled states (electrons) on either side of the junction, and below the
Fermi level there are no empty states (holes) available on either side of the junction. Hence, the
net tunneling current at zero applied voltage is zero.
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Figure 3.9: (left) Static current-voltage characteristics of a tunnel diode IP and VP , are the peak
current and peak voltage. IV and VV are the valley current and valley voltage. (right) Energy-band
diagram of tunnel diode in thermal equilibrium. (Sze)

• Under FB e may tunnel from the filled states of the CB of n-side to the unfilled states of the
VB of the p-side allowing a large forward current with increasing bias (Fig. 3.10a-b) upto the
point (IP , VP ).

• For V ≤ VP e tunnel across the band gap of the material and not a physical barrier.

• At IP , VP the CB edge of n-side is energetically aligned with the VB edge of the p side.

Figure 3.10: Energy-band diagrams of tunnel diode at (a) thermal equilibrium, zero bias; (b) forward
bias V such that peak current is obtained; (c) forward bias approaching valley cur- rent; (d) forward
bias with diffusion current and no tunnelling current; and (e)reverse bias with increasing tunnelling
current. (Sze)

• Negative Differential Resistance (NDR): Increasing voltage above VP no longer increases current
but decreases it. Since the e at the CB edge of the n-side cannot tunnel to the p-side since at
that energy there are no vacant states within the p-side. Thus the current begins to decrease
with increasing voltage, resulting in a region of negative differential resistance (dI/dV < 0) in
the voltage-current characteristic curve (Fig. 3.10c) for VP < V < VV in the FB regime.

• With further increase inV > VV intraband diffusion current dominate transport and current
monotonically increases with voltage (Fig. 3.10d).

• Fig. 3.10e shows electron tunneling from the VB to the CB under reverse bias. Here, the
tunneling current may increase indefinitely with bias.
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Fig. 3.11 shows the FB IV characteristics of tunnel diodes made of different semiconductors. Note
that the NDR region is typically restricted to around 500 mV. Interestingly, the IV s originate from

Figure 3.11: Typical IV characteristics of Ge, GaSb, and GaAs tunnel diodes at 300 K(Sze)

the quantum tunnelling process which dominates transport for V < VV as opposed to drift-diffusion in
generic diodes. Since tunnelling is an extremely fast process tunnel diodes are used as active elements
in switching circuits and oscillators. Their low capacitance allows them to function at microwave
frequencies, far above the range of ordinary diodes and transistors. However, low output power,
tunnel diodes, limited to a few hundred milliwatts limit their applications. The resonant-tunneling
diode (RTD) has achieved some of the highest frequencies of any solid-state oscillator.

3.7.3 Diode Thermometry

Diode thermometry is based on T dependence of the FB V drop in a pn diode at a constant current,
Idc(∼ 10µA). Fig. 3.12(left) shows IV characteristics at various T for a Si diode2. At higher T it
takes a smaller V for the diode to conduct at a given I, due to a larger ni in eqn. 3.15. Since the

Figure 3.12: (left)IV characteristics of a Si diode at various T (right) 2NI05 Ge diode V vs T at
constant current.

resulting diode V >> kT between 0.1 - 6 V, eqn. 3.15 may be re-written as (V −ϕB) ≃ kT ln(Idc/A).
A constant Idc =⇒ V ∝ T . Fig. 3.12(right) shows the V T for a Ge diode3. Typically dV/dT ∼ -
2 mV/K from 300 - 20 K. Fig. 3.13 shows the characteristics of a Si diode DT-670 from LakeShore
Cryotronics4. See this page for simulating the V vs. T graph for diodes; http://lampx.tugraz.at/
~hadley/psd/L6/VT_I.php.

2An alternative methodology in Schottky diode physics. J. of Appl. Phys. 117, 244501, 2015; doi: 10.1063/1.4922974
3Solid-State Electronics, 15, 473, 1972
4https://www.lakeshore.com/products/categories/overview/temperature-products/cryogenic-temperature-

sensors/dt-670-silicon-diodes
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Figure 3.13: Si diode DT-670 (left)V T characteristics, (right) Sensitivity dV/dT vs. T .

Problems
1. Band bending at the p-n junction. The total drop in the prole of the bands shown in Fig. 2.2 can

be calculated in two different ways. First let us see the method given in most text books. The
flow of charge through the junction can be thought to have a drift (forced by the electric field)
and a diffusion (forced by density gradient) component-at equilibrium, when the electrochemical
potential in constant, these two components must add upto zero. So we get for zero electron
current

Jdrift + Jdiffusion = 0 (3.19)

−neµdV
dx
−Dedn

dx
= 0 (3.20)

We have used the standard relation between current, diffusion constant and density gradient.
(A full justification of this set of equations require the Boltzmann transport formulation.) Then
solve the differential equation using D/µ = kT/e and the assumption that all dopants are ionised.
So that the electron density on the n-side is n = ND and on the p-side it is n = n2

i /NA. You
should get the result for the total change in electrostatic potential as one moves from one side
of the junction to the other. The electron bands are higher on the p-side.

△V = kT

e
ln NAND

n2
i

(3.21)

Now think of the same in another way. Let us not mention diffusion constant at all, but use the
fact that the electrochemical potential (Ef ) is constant. Here the free energy of the electrons
can be written, including the electrostatic potential as

F = −kBT ln Z
n

n! + neV (3.22)

where the electron density n(x) is a function of position. And

Z = 2Ω(2πmkBT
h2 )3/2 (3.23)

is the partition function of a single free electron moving in the conduction band. Ω is the volume
which should drop out of the calculation. Since we assume full ionisation we can neglect the
entropy contribution coming from possible number of ways to distribute the bound electrons
among the dopants. Differentiating this w.r.t. n to get the electrochemical potential, first write

Ef (x) = dF

dn(x) (3.24)

And then show that setting Ef (x) = constant leads to exactly the same condition as before.
Convince yourself that in both cases the approximations that we made are actually identical.
They are both consequences of Boltzmann statistics applied to the free electron gas in the
conduction band.
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2. Try to draw the band diagram of the metal-semiconductor contact when |φs| > |φm| and the
semiconductor is p-type. Where will the semiconductor accommodate the electrons flowing in?
Why doesn’t the depletion zone extend to the metal as well?

3. Consider a gold-GaAs Schottky diode with a capacitance of 1 pF at -1 V. What is the doping
density of the GaAs? Also calculate the depletion layer width at zero bias and the field at the
surface of the semiconductor at -10 V bias voltage. The area of the diode is 10-5 cm2.

4. Using the work functions listed in table to predict which metal-semiconductor junctions are
expected to be ohmic contacts. Use the ideal interface model.

5. Design a Pt-Si diode with a capacitance of 1 pF and a maximum electric field less than 104

V/cm at -10 V bias. Provide a possible doping density and area. Make sure the diode has an
area between 10−5 and 10−7 cm2. Is it possible to satisfy all requirements if the doping density
equals 1017 cm−3?

6. A Pt-Si diode (area = 10−4 cm-2, Nd = 1017 cm-3) is part of an LC tuning circuit containing
a 100 nH inductance. The applied voltage must be less than 5 V. What is the tuning range
of the circuit? The resonant frequency = 1

2π
√
LC

, where L is the inductance and C is the diode
capacitance.

7. Consider two Schottky diodes with built-in potential Vbi = 0.6 V. The diodes are connected in
series and reversed biased. The diodes are identical except that the area of one is four times
larger than that of the other one. Calculate the voltage at the middle node, Vout, as a function
of the applied voltage, Vin. Assume there is no dc current going through either diode so that
the charge at the middle node is independent of the applied voltage.

8. A metal-semiconductor junction consists of Pt and GaAs with Nd = 1017 cm-3. The applied
voltage equals -3 V. Calculate the electric field in the semiconductor at the metal-semiconductor
interface. Use Vbi = 0.8 V.

9. An Al-Si Schottky diode has a breakdown voltage of 5 V. The silicon is p-type with a doping
Na = 10V18 cm-3. Calculate the breakdown field and the depletion layer width. (FM = 4.0 V)

10. A metal-semiconductor junction, biased at an unknown voltage, has a doping density of 10V17

cm-3 and a capacitance of 1 pF. The semiconductor is p-type Ge, Vbi = 0.5 V and the diode
area is 10V−4 cm2. Calculate the depletion layer width and the applied voltage.

11. A metal-semiconductor junction, biased at an unknown voltage, has a maximum electric field of
105 V/cm and a capacitance of 1 pF. The semiconductor is n-type GaAs, the built-in potential
of the junction is 0.7 V and the diode area is 10V−4 cm2. Calculate the doping density and the
applied voltage.

12. SiC contains three cigar-shaped conduction band minima. The constant energy surfaces of these
are ellipsoids which are given by:
E = Emin + ℏ2[kx−kxo

mt
+ ky−kyo

mt
+ kz

mi
]

and (kxo, kyo, 0) = k0(1, 0, 0), k0(−1
2 ,

√
3

2 , 0), andk0(−1
2 ,

−
√

3
2 , 0)

Derive an expression for the effective mass used in the Richardson constant for a flow of carriers
in the z-direction. Derive an expression for the Richardson velocity in the z-direction.
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dopant density (cc−1)

Figure 3.14: The variation of mobility with doping and carrier density can be empirically modelled
from experimental data and used to solve the current equation numerically.
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4

Optical Processes in Solid State
Systems

When electromagnetic radiation, especially in the near UV to the IR (200 nm - 104 nm) is incident
on a solid state system, its response is experimentally evidenced by recording a range of signals,
corresponding to distinct light matter that may be classified into;

1. Reflection (occurs at the interface between two materials with different refractive indices)

2. Refraction

3. Absorption (if hν of light matches characteristic energy gaps e.g. band gap or other excitations)

4. Scattering (i) Elastic e.g. Rayleigh (ii) Inelastic e.g. Raman

5. Luminescence (emission of light due to de-excitation of electrons from a higher energy state. Ex-
citation may be via optical (photo-) or electron injection (electro-, cathodo-, tunnelling induced
etc.))

6. Other non-linear optical processes

Figure 4.1: (left) Optical processes (right) spectral dependence of R, T, A coefficients

4.1 Quantifying Optical Coefficents

If light of intensity Io (power per unit area) is incident on a slab of solid as shown in figure 4.1 and
the reflected, transmitted light have intensities IR and IT then we can define the reflectance and
transmittance as R = IR/Io and T = IT /Io. In the absence of absorption and scattering R+T=1. If
the media is absorbing then the absorptance (A) is quantified by its absorption coefficient α, defined
as the fraction of the power absorbed in a unit length of the medium. If the beam is propagating in
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the z direction, and the intensity at position z is I(z), then the decrease of intensity in an incremental
slice of thickness dz is given by:

dI = −αdz × I(z) (4.1)

which gives the Beer’s law;
I(z) = Ioe

−αz (4.2)

In general the absorption coefficient is a function of wavelength and thus may absorb specific wave-
lengths and transmit others. This is the operating principle of many optical filters that absorb all
wavelength except a narrow band. Fig. 4.1(right) shows the spectra of a sample that has strong
absorption and transmission around 450 nm and high reflection at other wavelengths. In the absence
of other processes the sum of the coefficients R+ T +A = 1 at all wavelengths.

The transmissivity T of an absorbing rectangular slab of thickness l is given by:

T = (1−R1)e−αl(1−R2) (4.3)

where R1 and R2 are the reflectivities of the front and back surfaces respectively. If R1 = R2 = R
then the above simplifies to;

T = (1−R)2e−αl (4.4)

Note: Multiple reflections between front and back surfaces are neglected in the above derivation. See
assignment problems on this topic.

In inhomogenous media, scattering may be mathematically modelled in an analogous way to ab-
sorption i.e. intensity decreases exponentially as it propagates into the medium according to:

I(z) = Ioe
−Nσsz (4.5)

where N is the number of scattering centres per unit volume, and σs is the scattering cross-section of
the scattering centre. Scattering by scatterers much smaller than the wavelength of the incident light
is known as Rayleigh scattering, where σs ∝ 1/λ4. This implies that inhomogeneous materials tend to
scatter short wavelengths more strongly than longer wavelengths, giving the day sky its blue colour
and red hue at sunset.

4.2 Optical Properties of Materials
Optical properties materials vary widely according to energetics of light - matter interactions in dif-
ferent systems. Materials can be loosely classified as follows;

• solids - insulators, semiconductors, metals - electronic bands

• molecular species - discrete hybridised electronic states

• atomic species - discrete electronic states

Figure 4.2: Transmission Spectra (left) various semiconductors and optical materials (right) earth’s
atmosphere containing various molecular species
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Fig. 4.2 shows the transmittance spectra of a range of optical materials that are either semiconductors
or insulators and that of the earth’s atmosphere containing various molecular species. For example,
the figure shows that the semiconductor ZnSe has high transmission (low absorption) between 0.45 -
15 µm and absorbs at shorter and longer λ. In contrast molecular absorption are spectrally narrow
- denoting transition between discrete states. Similarly atomic absorption spectra also show narrow
peaks at energies matching the energy difference between discrete states. Molecular absorption spectra
not only evidence transition between electronic states but also absorption due to vibrational and
rotational degrees of freedom and associated energy states.

Figure 4.3: (left) Reflection Spectra of various metals (right) Absorption Spectra of various metal
nanoparticles

Metals are distinguished from other solids by their shiny lustre and high reflectivity in the visible,
which originates from interaction of light with the large free electron density of metals. Fig. 4.3(left)
shows the reflectivity spectra of various metals evidencing R ≳ 80% in the VIS and IR. Note that R
decreases sharply for light of frequencies above a specific frequency known as the plasma frequency
ωp, typically in the UV. Consequently, metals reflect IR and VIS wavelengths but transmit in the
UV, a phenomenon known as the "ultraviolet transparency of metals." Additionally, certain metals
display distinctive colours; copper - pinkish hue, gold - yellowish tint, silver - pale yellow etc.These
colours stem from interband electronic transitions that supplement the reflection effects induced by
free carriers. In contrast metal nanoparticles display distinct absorption peaks in the visible, as shown
in Fig. 4.3(right). The absorption originates from excitation of localised surface plasmons - free
electron oscillations in the nanoparticles.

For bulk systems, refractive index (ñ) is a parameter that quantifies interaction of light with
matter.

Refractive Index

Absorption, reflection and refraction of a medium can be described by a single quantity called the
complex refractive index ñ = n+ iκ. The real part is the normal refractive index defined by the ratio
c/v and the imaginary part κ, called the extinction coefficient is directly related to loss quantified by
the absorption coefficient α of the medium. Consider an electromagnetic wave propagating in the z
direction, given by E⃗ = Eoe

i(kz−ωt). In a non-absorbing medium of refractive index n, the wavelength
of the light is reduced by a factor n compared to the free space wavelength λ. k and ω satisfy the
relation k = nω/c. This can be generalized to the case of an absorbing medium as k = ñω/c. This
then gives E⃗ = Eoe

κωz/cei(ωnz/c−ωt), demonstrating that κ leads to an exponential decay of the field
(wave) in the absorbing medium. Noting that the intensity of light is proportional to the square of
the electric field we can show that;

α = 4πκ/λ (4.6)
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Since the refractive index is related to the dielectric constant or relative permittivity (ϵ̃r) of a media,
note that;

ñ2 = ϵ̃r = ϵ1 + ϵ2

ϵ1 = n2 − κ2

ϵ2 = 2nκ

and

n =

√
ϵ1 +

√
(ϵ21 + ϵ22)
√

2
(4.7)

κ =

√
−ϵ1 +

√
(ϵ21 + ϵ22)

√
2

(4.8)

If κ << n, the above relations can be written as n = √ϵ1 and κ = ϵ2/2
√
ϵ1, indicating that the

refractive index is basically determined by the real part of the dielectric constant, while the absorption
is mainly determined by the imaginary part. This generalization is obviously not valid if the medium
has a significant absorption coefficient.

4.3 Light - Matter Interactions: a Classical Model

The classical model of light propagation was developed at the end of the 19thC following Maxwell’s
theory of electromagnetic waves and the introduction of the concept of the dipole oscillator. We
assume that there are several different types of dipole oscillators within a medium, each with their
own characteristic resonant frequency (ωo). The different types of oscillators may be;

• Atomic Vibrations: bound electron oscillations - near IR, visible, UV (1014-1015 Hz)

• Lattice Vibrations: ionic oscillations - infrared (1012-1013 Hz)

• Free carrier (e or h) oscillators (characteristic resonant frequency = 0)

The Dipole Model: Lorentz Oscillator

Consider the interaction between a light wave and an atom with a single resonant frequency ωo that
binds the electron cloud to the nucleus.The electric field of the light wave induces forced oscillations
of the atomic dipole through the driving forces exerted on the electrons. Since the nuclear mass is
much larger than the mass of electrons (mN >> mo) we ignore the motion of the nucleus. The EOM
of the electron is given by;

moẍ+moγẋ+moω
2
ox = −qeE (4.9)

where ωo ≃
√
K/mo, γ is the damping rate and E = Re[Eo exp(i(ωt−Φ))] is the external electric field.

The above equation is that of a forced oscillator with solutions of the form x(t) = XoRe[exp(i(ωt −
Φ′))]1. Substituting the expressions for E and x in the above equation gives;

Xo = − qeEo/mo

(ω2
o − ω2)− iγω (4.10)

where the different phase factors are subsumed in the amplitudes Xo and Eo. This induces a time
dependent dipole moment p(t)(= −qex(t)) in each atom. Considering there are N atoms per unit
volume the net dipole polarisation density (Pdip) is given by,

Pdip = N
q2
e/mo

(ω2
o − ω2)− iγωE (4.11)

1only the time dependent part of E and x are considered
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Figure 4.4: Frequency dependence of the real and imaginary parts of ϵ̃r and ñ of a single dipole
oscillator at frequencies close to resonance. (Fox)

Here E is strictly not the external electric field but the net electric field including the field of the other
dipoles Enet = Eext + Eotherdipoles. The effect can be ignored assuming the dipole density is small2.
The electric displacement D = ϵ0E + P and P = Pb + Pdip, where Pb = ϵ0χE is the background
polarization of the media in which the dipoles are embedded. Together the relative permittivity (ϵ̃r)
of the background media and the dipoles may be derived as;

ϵ̃r = 1 + χ+ Nq2
e/ϵ0mo

(ω2
o − ω2)− iγω (4.12)

ϵ1 = 1 + χ+ Nq2
e

ϵ0mo

(ω2
o − ω2)

(ω2
o − ω2)2 + (γω)2 (4.13)

ϵ2 = Nq2
e

ϵ0mo

γω

(ω2
o − ω2)2 + (γω)2 (4.14)

In the low and high frequency limits i.e. ω → 0 and ω →∞ we get,

ϵ̃r(0) = 1 + χ+ Nq2
e

ϵ0moω2
o

(4.15)

ϵ̃r(∞) = 1 + χ (4.16)

=⇒ ∆ϵ̃r = ϵ̃r(0)− ϵ̃r(∞) = Nq2
e

ϵ0moω2
o

(4.17)

Noting that the last term in the RHS of the eqns. 4.19 assume structure only near resonance and
decay to zero elsewhere, we define δω = ωo − ω, whence (ω2

o − ω2) ≃ 2ωoδω. Thus close to resonance
(ω → ωo) the real and imaginary ϵ̃r are given by,

ϵ1 = ϵ̃r(∞) + ∆ϵ̃r
2ωoδω

4(δω)2 + γ2 (4.18)

ϵ2 = ∆ϵ̃r
γωo

4(δω)2 + γ2 (4.19)

Fig. 4.4 plots the frequency dependence of the ϵ̃r and ñ of a single dipole oscillator at frequencies
close to resonance.

2see Fox section 2.2.4
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1. The plot for ϵ2 shows a strongly peaked function that maximizes at ω = ωo with an FWHM = γ
and quantifies absorption of the dipole.

2. ϵ1 saturates to ϵ̃r(0) and ϵ̃r(∞) at the lower and higher extremes.

3. At resonance, δω = 0 and ϵ1 = ϵ̃r(∞)

4. ϵ1 displays a minima and maxima at ω ± γ/2.

5. The entire action of the dipole is restricted to frequencies in the range ω±γ demonstrating that
damping causes line broadening. The plotted line shapes are known as the Lorentzian.

In general a medium will have several characteristic frequencies ωoi with different damping γi and also
different species. Again assuming that the dipole density is low and the dipoles DO NOT interact
with each other, following the previous discussion the polarization and the dielectric constant may be
written as,

Pdip =
∑
j

N
(q2
e/mo)fj

(ω2
oj − ω2)− iγjω

E (4.20)

ϵ̃r = 1 + χ+
∑
j

N
(q2
e/mo)fj

(ω2
oj − ω2)− iγjω

(4.21)

fi is a phenomenological constant that denotes the strength of individual oscillators i.e. excitations.

Figure 4.5: (left) Frequency dependence ñ of a system with oscillators at 3 different resonance fre-
quencies, calculated from eqn. ?? (right) ñ of fused silica (SiO2)(Fox)

Fig. 4.5(left) plots the complex ñ for a system with dipole oscillators with 3 different ωoi and γi, but
same fi.

1. as labelled in the figure, typically resonances in the IR originate from vibrational (rotational)
modes of excitation and those in the VIS and UV originate from electronic excitations

2. the system is lossy or absorbs significantly near the resonances and is transparent for other ω.

3. since ϵ̃r(0) > ϵ̃(∞) the n decreases with increasing ω

4. individual oscillators may have different strengths which are accounted for by the parameter fi.
The classical model discussed here gives all fi = 1.
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Fig. 4.5(right) plots the complex ñ for fused silica (SiO2). Note that κ << n for all ω other than
close to the ωos i.e. the material has high T except close to ωos, where A is strong. Fig. 4.5(right)
also shows that close to the ωos, n may be less than 1. This is a special regime connected to a class
of materials known as the epsilon near zero materials which display interesting optical phenomena3.

Kramers–Kronig Relations

The mathematical forms of n and κ and their physical manifestation show that they are not inde-
pendent quantities but are inter-related mathematically by what are known as the Kramers–Kronig
relations. These are bidirectional mathematical relations, connecting the real and imaginary parts
of any complex function that is analytic in the upper half-plane. The relations are used to compute
the real part from the imaginary part (and vice versa) of linear response functions like ñ in physical
systems,

n(ω) = 1
π
P
∫ ∞

−∞

κ(ω′)
ω′ − ω

dω (4.22)

κ(ω) = − 1
π
P
∫ ∞

−∞

n(ω′)
ω′ − ω

dω (4.23)

Here P denotes the Cauchy principal value. The real and imaginary parts are thus not independent,
allowing the full function to be reconstructed given just one of its parts. In effect, this also applies for
the complex relative permittivity and electric susceptibility (χ and other response functions.

4.4 Interband Transitions

4.5 Excitons

4.6 Luminescence

4.7 Quantum Confinement
Optical properties of solids are generally independent of their size - till we make them very small.
But why and how small is that "very small"? As an example see figure 4.6 that shows CdSe quantum
dots (QD) of different sizes illuminated with UV radiation. CdSe is a semiconductor with a bulk band
gap Eg ∼ 1.75 eV ≡ 708 nm. However the photoluminescence (PL) peak blue shifts with decreasing
size of the QD. The observed colour originates from their individual photoluminescence, which is now
a strong function of their QD size and a direct result of quantum confinement. Quantum confined

Figure 4.6: Suspension of quantum dots of CdSe of various sizes (increasing left to right) illuminated
with UV light.

semiconductors are mostly artificially fabricated nanostructures where the erstwhile "free" electrons
3Adv. Photonics Research, 3, 2100153, 2022; J. Appl. Phys. 127, 043102, 2020
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and holes are restricted in movement in one or more directions. These restrictions arise from physical
confinement or size of the structures to be typically in the range of a few nanometers, typically ≤ 5
nm. To estimate this typical size below which the quantum confinement effects become realizable, we
begin with the uncertainity principle;

∆px ∼
ℏ

∆x (4.24)

which says that if the particle’s position is uncertain (or is confined) over a range ∆x then the
uncertainity in the conjugate momentum is ∆px. Assuming that the "confined" particle is otherwise
free within the range ∆x i.e. PE is negligible, then this confiniement contributes to the particle energy
which can be estimated as;

Econ = ∆p2
x

2m ∼ ℏ2

2m(∆x)2 (4.25)

Now this confinement energy would be significant in magnitude iff it is comparable or greater than
the thermal energy of the particle. i.e. Econ ≥ kBT/2. We can conclude that quantum confinement
effects dominate when the particle size is;

∆x >
√

ℏ2

mkBT
(4.26)

Assuming m = 0.1me and T = 300 K, we can easily show that the RHS of the above equation 4.26
is ∼ 5 nm. The equation also tells us that quantum confinement effects become evident at lower
temperatures since lower T would increase the ∆x threshold. Remember that for free electrons the
functional form of the DOS i.e. dependence on E of free electrons were dictated by the dimension
of the system. Figure 4.7 shows the variations across systems with different dimensions. Needless to
say that a 2D system has 2 DOF and is confined along 1 dimension, a 1D system has 1 DOF and is
confined along 2 dimensions and in a 0D system i.e. a QD motion is confined along all 3 dimensions.
Which means that motion of electrons and holes are quantized along all 3 directions in a 0D system,
such that they are localised along all three directions, with no continuous band at all. In a 2D system
motion is delocalised along the 2 directions orthogonal to the direction of confinement - along which the
motion of electrons/holes are quantized. Confinement in any dimension and consequent quantization

Figure 4.7: Variation of the functional form of the DOS and its plot with Energy, for various dimensions

of motion along that axis results in increase in energy of the quantum particles - by Econ and change
in the functional form of the DOS. Figure 4.8 plots the DOS of a band gap semiconductor for which
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Figure 4.8: Evolution in DOS and its Energy dependence for a band gap (E − g) semiconductor of
increasingly restrictive dimensions

various number of dimensions are confined taking it from a bulk (3D) system to a QD (0D). Its worth
noting that quantum confined systems, especially 2D electron gas systems and 0D quantum dots have
very interesting optical and electrical properties that make them amenable for various interesting
applications. Importantly, the general method of investigation introduced here are readily applicable
to other quantum confined systems like carbon nanotubes or molecular wires etc.

4.8 2D Quantum Well Structures

Semiconductor QW are artificially fabricated heterostructures where layers of different materials are
grown on top of each other. Figure 4.9 shows the schematic of QWs made of GaAs and AlGaAs. The
typical Eg(GaAs) = 1.4 eV and Eg(AlGaAs) → 1.4 - 2.16 eV, which can be controlled by changing
the incorporated Al concentration.

Figure 4.9: (a,b)Schematic of single QW and multiple QW or superlattice of GaAs and AlGaAs layers
(c,d) Cross-sectional TEM of a MOVPE-grown superlattice of InAs in GaAsN. Individual InAs layers
are indicated by arrows. [Fox, Grundmann]

4.9 free Electrons in Quantum Wells

• unbound in x, y directions - part of extended bands of the 2D electron system
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• confined in z direction - quantized energy states

In QW heterostructures, semiconductors with different bandgaps are combined to fabricate the QW.
Figure 4.10(a) shows the typical band alignment in a QW, where the CBE and VBE of the smaller
band gap semiconductor Eg1 lies completely within the band gap of the material with larger bandgap
Eg2. Since the smaller Eg1 material (e.g. GaAs) is bounded on either side with the larger Eg2
material (AlGaAs), see figure4.9(a,b) the electrons and holes in Eg1 will localise therein, trapped by
the discontinuities in the band edges (potential barriers) on either side i.e. ∆EC and ∆EV in figure
4.10(a).These conduction- and valence-band discontinuities are given by;

∆EC = (χ1 − χ2) (4.27)
∆EV = (χ1 + Eg1)− (χ2 + Eg2) (4.28)

where χi are the electron affinity taken as the CB minima (ECi) of the respective materials and
similarly the VB maximum (EV i), with (Egi = ECi−EV i). These barriers quantize the states in the z
direction, but the motion in the x, y plane is still free. We thus effectively have a 2D system in which
the carriers are quantized in one direction and free in the other two. A general QW structure consists
of a series of repeated QW of width d separated from each other by AlGaAs layers of thickness b.
This type of structure is either called a multiple quantum well (MQW) or a superlattice, depending
on the parameter b. MQW s have large b values, so that the individual quantum wells are isolated
from each other, and the properties of the system are essentially the same as those of single QW.
They are often used in optical applications to give a usable optical density. Superlattices, by contrast,
have much thinner barriers. These QW are coupled together by tunnelling through the barrier, and
new extended states are formed in the z direction. Superlattices have additional properties over and
above those of the individual QWs. QW structures of the type shown above can only be made if
the physical properties of the constituent compounds are favourable to the formation of the artificial
crystals i.e. lattice constant of the semiconductor materials are close to each other e.g. the unit
cell size of GaAs and AlAs (and hence also the AlxGal-xAs alloy) are almost identical. Further,
the relative position of conduction and valence band (band alignment) is determined by the electron
affinities should be favourable for the intended application. Figure 4.10(b) shows the band energies
for various semiconductors. The design of heterostructures to fulfill a certain device functionality or
to have certain physical properties is called ‘bandgap engineering’.

Figure 4.10: (a)Position of band edges (band alignment) in a typical QW heterostructure (b)Position
of CB and VB edges for various semiconductors.[Grundmann]

4.10 Electronic States of the 2D Quantum Wells
The energy in a single quantum well of thickness Lz (along the growth direction z) can be calculated
employing the quantum-mechanical particle-in-a-box model. The problem separates naturally between
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the free motion in the xy plane and the quantized motion in the z direction. Thus, the time independent
part of the electron wavefunction can be written as;

Ψ(x, y, z) = ψ1(x, y)ψ2(z) (4.29)

evidently the delocalised motion in the xy plane may be described by a suitable wavevector k⃗ with
that along the z direction may be described by a quantum number n. Assuming that the carrier is a
free particle in xy plane the corresponding wave function may be written as;

ψ1(x, y) = 1
A
eik⃗.r⃗ (4.30)

here r⃗ pans the xy plane and A is a normalisation constant and The energy corresponding to this
motion is just the kinetic energy determined by the effective mass of the free particle, such that the
total energy i.e. including the quantized energy is given by;

Etotal(n, k⃗) = En + ℏ2k2

2m∗ (4.31)

In order to obtain ψ2(z) we need to estimate the bounding potentials ∆EC and ∆EV that localise
carriers within the smaller band gap semiconductor. As a first approximation lets assume that these
binding potentials are infinitely high. That is the electron confinement states may be modelled by
those of a 1D infinite well of width d.The Schrodinger equation within the well is given by;

− ℏ2

2m∗
d2ψ2(z)
dz2 = Eψ2(z) (4.32)

Applying the boundary conditions for the infinite potential well that ψ2(0) = ψ2(d) = 0 gives us;

ψ2(z) =
√

2
d

sin(nπz
d

) (4.33)

with the energy of the nth level given as;

En = ℏ2

2m∗ (nπ
d

)2 (4.34)

Figure 4.11: (a)Infinite 1D potential well. The first three energy levels and corresponding wave
functions. (b)Finite 1D potential well with first 2 bound states and corresponding wave functions.[Fox]

Although real semiconductor quantum wells have finite barriers, the infinite barrier approximation
gives us a fair estimate of the concerned parameters and a viable model to discuss their properties.
Evidently, the accuracy of the calculated parameters for this model will be highest for states with
small quantization energies in material combinations that give rise to high barriers at the interfaces.
Its worth noting the following important points. 1) Energy of quantised levels are (i) ∝ 1/m∗ and
(ii) ∝ 1/d which implies that thinner wells with lighter effective mass of particles have higher energy.
(2) Since the energy depends on the effective mass, electrons, heavy holes and light holes will all have
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different quantization energies i.e. the VB heavy holes will have the lowest energy and will form the
ground state level.

Its imporatnt that we estimate the quantization energy given by equation 4.34. Assuming m∗ =
0.1me and d=10 nm we get the energies of the first two states as 38 meV and 150 meV respectively.
Remember that these energies are above the band edge or EC of the system. Evidently, the quantiza-
tion energy is greater than the thermal energy at room temperature, kBT ∼ 25 me V, justifying the
quantum description. Overall the infinite well model overestimates the quantization energy. In real
quantum wells with finite barriers, the particles are able to tunnel into the barriers to some extent,
and this allows the wave function to spread out further and thus reduces the confinement energy.

4.11 Finite Potential Well
The z confinement of a real QW is far better modelled using a finite 1D potential well, schematically
shown in figure 4.11(b). Here the height of the confining potential well is V0(= ∆EC) and the potential
inside the well is 0 (=EC1). The Schrodinger equation within the quantum well (−d/2 ≤ z ≤ d/2) is
the same as before but beyond the equation is different, which are given as;

− ℏ2

2m∗
w

d2ψ2w(z)
dz2 = Eψ2w(z) (4.35)

− ℏ2

2m∗
b

d2ψ2b(z)
dz2 +V0ψ2b(z) = Eψ2b(z) (4.36)

Note that the effective mass of the particle is different inside (m∗
w) and outside (m∗

b) the well - which
are obviously composed of different material and thus have differnt m∗. The corresponding wave
functions are given by;

ψ2w = C sin(kz)orC cos(kz)−−−−−−− (−d/2 ≤ z ≤ d/2) (4.37)
ψ2b = C ′e−κz −−−−−−−−− (z ≥ d/2) (4.38)

ψ2b = C ′eκz −−−−−−−−−−(z ≤ −d/2) (4.39)

where ℏ2k2/2mw = E and ℏ2κ2/2mb = V0−E. The solutions are oscillatory inside the well and decay
outside. We know that for symmetric potentials, V (x) = V (−x), the wave functions of the bound
states must be either even or odd. Thus the bound state wave functions (equation 4.26) corresponding
to the potential shown in figure 4.11(b) can be written as;

ψ2(z) =
√

2
d

sin(nπ
d
z)(n = 2, 4, 6, 8, ....) (4.40)

ψ2(z) =
√

2
d

cos(nπ
d
z)(n = 1, 3, 5, 7, ....) (4.41)

That is, the wave functions corresponding to odd quantum numbers (n = 1, 3, 5, 7, ....) are symmetric,
ψ2(z) = ψ2(−z), and those corresponding to even numbers (n = 2, 4, 6, 8, ....) are antisymmetric,
ψ2(z) = −ψ2(−z). Coupled with the boundary conditions that the wave functions and the particle
flux are continous at the boundaries we get;

ψ2w(0/d) = ψ2b(0/d) (4.42)
1
m∗
w

ψ2w
dz
|(0/d) = 1

m∗
b

ψ2b
dz |(0/d) (4.43)

which gives rise to the conditions;

tan(kd/2) = m∗
wκ/m

∗
bk (4.44)

tan(kd/2) = −m∗
bk/m

∗
wκ (4.45)

In principle we can solve for the Energy once we have substituted the functional forms of k and κ,
however there are no analytic solutions, which have to be arrived at numerically or graphically. See
any standard Quantum Mechanics text for the graphical solutions. Figure 4.11(b) shows the wave
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functions of a typical finite well with two bound states. The similarity between these wave functions
and the first two states of the infinite well is apparent. The main difference is that the wave functions
of the finite well spread out more by tunnelling into the barrier, whereas the wave functions of the
infinite well stop abruptly at the boundary. The table 4.1 below gives the first few bound state energies
for electrons and holes for a 10 nm GaAs QW in Al0.3Ga0.7As for both the finite and infinite QWs.

Table 4.1: Bound states energies of a GaAs/ AlGaAs QW under finite and infinite well models.
Energies are in meV

particle Q. No. Finite QW Infinite QW
e 1 32 57
e 2 120 227
e 3 247 510

hh 1 7 11
hh 2 30 44
hh 3 66 100

Based on the above discussion its worth noting that;

• The spreading of the wave functions into the barrier by tunnelling reduces the quantum confine-
ment energy compared to that of an infinite barrier well.

• Levels near the top of the well with Energies close to V0 have a smaller decay constants and
tunnel more into the barrier.

• The infinite QW overestimates the quantization energy. The difference increasing for higher
quantum number of the states (n).

• Quantization energies of heavy holes are smaller than those of the electrons because of their
heavier effective mass.

• Separation between successive electron levels is > 3kBT at RT, ensuring two-dimensional physics
for the electrons at 300 K.

4.12 Optical Absorption in QWs

Here we consider absorption of electromagnetic radiation by a QW, where an electron in the VB of
the well absorbs energy and is excited to an electronic state in the CB. The absorption rate calculated
from applying Fermi’s golden rule gives us;

Wi−f = 2π
ℏ |M |

2g(ℏω) = 2π
ℏ
|⟨f | − er⃗.E⃗0|i⟩|2g(ℏω) (4.46)

and
M ∝ ⟨f |r⃗|i⟩ =

∫
Ψ∗
f (r⃗)xΨi(r⃗) (4.47)

assuming that the electric field is along x direction. Since QWs are highly anisotropic in their poten-
tional configuration, especially along the confinement direction z we note that;

⟨f |x|i⟩ = ⟨f |y|i⟩ ≠ ⟨f |z|i⟩ (4.48)

and remember in case of the QWs the wavefunction is given by;

Ψ(r⃗) = ψ1(x, y)× ψ2(z) (4.49)

= 1
A
eik⃗xy .r⃗xy × ψ2(z) (4.50)
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If the incident light is polarized along x axis and travels along the z direction and we consider electron
transition from a bound state characterised by the quantum number ni, in the VB to a a bound state
characterised by the quantum number nf , in the CB. The corresponding wavefunctions are given by;

Ψi ∝ uv ψ2h(ni, z) eik⃗xy .r⃗xy (4.51)
Ψf ∝ uc ψ2e(nf , z) eik⃗

′
xy .r⃗xy (4.52)

We note the following in the above equations;

1. The plane waves characterised by the term eik⃗xy .r⃗xy spans the 2D xy plane.

2. The functions uC and uV are the 3D Bloch functions of the CB and VB commensurate with the
periodic potential of the atomic lattice.

3. ψ2hni
and ψ2enf

are the localised bound states of the QW

4. k⃗xy = k⃗′
xy since the photon momentum is nsgligibly small wrt the crystal momentum.

M ∝ ⟨f |r⃗|i⟩ =
∫
u∗
c ψ

∗
2e(nf , z) e−ik⃗′

xy .r⃗xy xuv ψ2h(ni, z) eik⃗xy .r⃗xyd3r⃗ (4.53)

=
∫
u∗
c xuvd

3r⃗

∫
ψ∗

2e(nf , z)ψ2h(ni, z)dz (4.54)

MCV =
∫
u∗
c xuvd

3r⃗ (4.55)

Mninf
=

∫
ψ∗

2e(nf , z)ψ2h(ni, z)dz (4.56)

M = MCV ×Mninf
(4.57)

The term MCV is akin to the allowed electronic transition between VB to CB in bulk systems i.e.
GaAs the QW layer. What about the term Mninf

? Obviously to calculate that term we’ll need the
exact functional forms of the integrands made up of the wavefunctions. Assuming the infinite QW
model we can write;

Mninf
= 2

d

∫ d

0
sin(nfπ

d
z) sin(niπ

d
z)dz (4.58)

= 2
2d

∫ d

0
cos((nf − ni)π

d
z)− cos((nf + ni)π

d
z)dz (4.59)

= 1
d

[− sin((∆n)π
d

z) + sin((nf + ni)π
d

z)]d0 (4.60)

Evidently, second term is always zero. And the overlap integral is equal to zero if ∆n = 0 and unity
otherwise. In finite QWs e and h wave functions with different quantum numbers are not always
orthogonal to each other. However, even then ∆n ̸= 0 transitions have a weak transition rate and
forbidden if ∆n = odd, since transition between odd and even parity states is zero. Figure 4.12 shows
the band diagram along z along with the E − kxy dispersion relation for a QW. As we increase the
photon energy (ℏω) from zero, no transitions will be possible until even ℏω = Eg since there are
no states at the bulk band edge. ℏω has to now cross the threshold for exciting electrons from the
ground state of the valence band (the ni = 1 heavy hole level) to the lowest conduction band state
(the nf = 1 electron level). This ∆n = 0 transition is allowed with the energy balance equation as,
ℏω = Eg + Ee1 + Ehh1. Thus the optical absorption edge of the QW has shifted to a higher energy
compared to the band edge of the bulk parent material as shown in figure 4.13. Importantly since
the shift Ee1 + Ehh1 is determined by the well width d we can relatively easily tune the absorption
edge. As shown in Figure 4.12the E − kxy bands, representing the free electron nature in xy plane,
are parabolic in nature. The energy conservation equation of the depicted transition is given by;

ℏω = Eg + (Ee1 +
ℏ2k2

xy

2m∗
e

) + (Ehh1 +
ℏ2k2

xy

2mhh∗ ) (4.61)

= Eg + Ee1 + Ehh1 +
ℏ2k2

xy

2µ∗ (4.62)
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Figure 4.12: Electronic transition in a QW at finite kxy[Fox]

Figure 4.13: (a)RT absorption spectra of GaAs/AlGaAs QW of d=10 nm along with that for
bulk GaAs.(b) Variation of e − h transition energies in GaAs/AlGaAs QW of varying thick-
ness.[Fox,Grundmann]
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which means that most transitions matching ℏω happen for kxy =0. Figure 4.14 shows the absorption
coefficient for an infinite quantum well of width d compared to the equivalent bulk semiconductor. The
dashed line shows the variation of α with energy as α ∝

√
E originating from the energy dependence

of the electronic DOS. Here the joint DOS of the 2D material is independent of energy and behaves
like a step function as shown in figure 4.7 for a 2D system given by g(E) = µ/πℏ2. Thus the α has a
step like nature with each absorption step located at energy given by ℏω − Eg = Eei + Ehhi. Which
for an infinite QW given below and plotted in Figure 4.14.

ℏω − Eg = ℏ2n2

2π2d2 ( 1
m∗
e

+ 1
m∗
h

) (4.63)

Figure 4.14: Absorption coefficient of bulk semiconductor and its Quantum well.[Fox]

4.13 Quantum Well Superlattice
In superlattices, the barrier thickness b (figure 4.9) is so small that the localised carrier wavefunctions
leak out and can tunnel into neighboring QWs and there exists significant wavefunction overlap between
adjacent wells. This leads to an engineered artificial band structure similar to the Kronig–Penney
model. These superlattice the bands are called minibands, the gaps are called minigaps. Figure 4.15
shows the calculated bands of a GaAs/AlGaAs superlattice. We will come back to superlattices in
Chapter 6 when we study emission from superlattices and QW lasers.

4.14 Triangular QWs
Now we consider a single heterointerface between n-doped materials e.g. n-AlGaAs/n-GaAs. Figure
shows the formation of a triangular potential well. The Fermi energy is higher in AlGaAs compared
to GaAs and thus electrons transfer from the formar to the latter to establish thermodynamic equil-
librium. At equilibrium the system must have a constant Fermi level across the junction. This results
in the formation of a triangular potential well in the GaAs close to the interface. A 2D electron gas
is trapped in this potential triangular QW (figure 4.16). The charge transfer adjusts the band bend-
ing and the charge density (quantized levels in the well) in such a way that they are self-consistent.
The Poisson equation and the Schrodinger equation are simultaneously fulfilled. Numerically, both
equations are iteratively solved and the solution is altered until it is self-consistent, i.e. it fulfills both
equations. Importantly, if the region of the 2DEG is not doped, the electron gas exists without any
dopant atoms and ionized impurity scattering no longer exists. This is known as modulation doping.
Absence of impurities and defects increases carrier mobility with mobilities up to 3.1 107 cm2/Vs have
been realized. Figure 4.17 shows the various milestones in high carrier mobility achieved in GaAs over
the years.
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Figure 4.15: Calculated bands of a superlattice as a function of QW width w. [Grundmann]

4.15 Problems
1. Crown glass has a refractive index of 1.51 in the visible spectral region. Calculate the reflectivity

of the air-glass interface, and the transmission of a typical glass window.

2. The complex dielectric constant of the semiconductor CdTe is given by ϵr = 8.92 + i2.29 at 500
nm. Calculate the phase velocity of light and the absorption coefficient.

3. Sea water has a refractive index of 1.33 and absorbs 99.8 % of red light of wavelength 700 nm
in a depth of 10 m. What is its complex dielectric constant at this wavelength?

4. Consider a flat, rectangular slab of material with complex refractive index. Show that R between
the medium and air, at normal incidence, is given by;

R = (n− 1)2 + κ2

(n+ 1)2 + κ2 (4.64)

5. If the thickness of the slab t >> lc, the coherence length of incident light, i.e. interference effects
may be neglected, show that

T = (1−R1)(1−R2)e−αt

1−R1R2e−2αt (4.65)

All symbols denote parameters as denoted in the text.

6. Interference effects can not be neglected if t << lc. Assuming R1 = R2 = R show that;

T = (1−R)2e−alphat

1− 2Re−αtcosΦ +R2e−2αt (4.66)

Φ is round trip phase shift within the slab.

7. Show that the uncertainity relation ∆x∆p for a 1D infinite wellis given by;

∆x∆p = ℏ
2(n

2π2

3 − 2) (4.67)

8. Calculate the energy of the first electron bound state in a GaAs/AlGaAs QW with d = 10 nm
and V0 = 0.3 eV. Take m∗

w = 0.067 and m∗
b = 0.092. Compare this value to the one calculated

for an infinite quantum well. Ans: Finite well E1=31.5 meV, Infinite well E1= 57 meV
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Figure 4.16: (a) GaAs and AlGaAs not in contact, showing different EF (b)GaAs and Al-
GaAs in contact, showing equillibrium EF , band bending and formation of triangular potential
well(c)Wavefunctions of the first 2 states of the triangular potential well (d)Energy states of the
triangular potential well. [Grundmann]

9. Estimate the difference in the wavelength of the absorption edge of a 20 nm QW of GaAs at 300
K. Ans: Ee1, Ehh1 are 14 and 2 meV, shift = 16 meV

10. What is the step height of the calculated DOS at En?

60



Figure 4.17: Progress in electron mobility in GaAs, with the technical innovation responsible for the
improvement [Grundmann]

Figure 4.18: Various parameters of Group III V semiconductors[Fox]
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5

Screening in 3D and 2D Electron Gas

5.1 Polarisation and Screening

Simplest case of e − e interactions. In a dielectric, that has only bound charges but no free charges,
the dipole moment per unit volume is related to field E⃗ by;

∇.P⃗ = −ρindP⃗ = ϵoχE⃗ (5.1)

Additionally, if there are free charges then they too would reorganise in response to the applied external
field E⃗ field. To analyse the given situation consider the case where field due to an external charge,
i.e. charge associated with an ionised impurity or a gate potential, is placed in a free electron sea
(CB electrons).
For such a case we can calculate the local potential from;

∇2V = −ρext + ρind
ϵoϵr

(5.2)

But how do we estimate ρind?

5.2 3D Electron Gas

Consider a metal or a degenerately doped semiconductor with free electrons. At equillibrium the Ef
is uniform across the system, that means at places higher e− potential energy corresponds to lower
e− concentration and vice-versa. Figure 5.1 below shows the EF in the CB, with electrons filling
all energy states below it. Note that regions having higher CB minima (higer PE) has lower local
density of electrons. Remember the case of Schottky and pn junctions where close to the junction

Figure 5.1: Spatial variation of PE and corresponding local number density.

on the n-type side the raising of CB minimum (local electron potential energy) resulted in depletion
in free electrons. Now for an ideal free electron gas (neglecting background potentials) at very low
temperatures T ∼ 0K we can write the Fermi energy as;

EoF = − ℏ2

2m(3π2no)2/3 (5.3)
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Now if we apply an electrostatic potential such that electron energy changes then the local chemical
potential is given by;

µ = EF (x)− eV (x) ≃ − ℏ2

2m(3π2n(x))2/3 − eV (r) (5.4)

Here EF (x) is the "local" Fermi energy and n(r) is the local free electron density. The above approx-
imation is valid if V (x) varies much slowly compared to λF (= 2π/kF ).

EF (n) ≃ EF (no) + ∂EF
∂n
|no .δn (5.5)

δEF = EF (n)− EF (no) ≃
∂EF
∂n
|no(n(r)− no) = eV (r) (5.6)

∂EF
∂n
|no = 2EoF

3no
(5.7)

⇒ n(x)− no = δn = 3
2no

eV (r)
EoF

(5.8)

⇒ δn = D(EF )× eV (r) (5.9)

where D(EF ) is the electron density of states (DOS) at EF and the local change in the free carrier
density is proportional to the local DOS and the local potential.

⇒ ρind = −e× δn = −e2D(EF )× eV (r) (5.10)

⇒ ∇2 = −ρext + ρind
ϵo

(5.11)

= −ρext
ϵo

+ e2D(EF )V (r)
ϵo

(5.12)

⇒ ∇2V (r)− q2
TFV (r) = −ρext

ϵo
(5.13)

where q⃗TH is the Thomas Fermi wave vector and |qTF | =
√

e2D(EF )
ϵo

. Fourier transform of the equation
5.13 gives us;

⇒ −q2V (q)− q2
TFV (q) = −ρext(q)

ϵo
(5.14)

such that,

V (r) = 1
(2π)3

∫
d3qV (q)e−iq⃗.r⃗ (5.15)

ρ(r) = 1
(2π)3

∫
d3qρ(q)e−iq⃗.r⃗ (5.16)

Thus we can write;

V (q) = ρext(q)
ϵo(q2 + q2

TF ) (5.17)

= q2ρext(q)/ϵo
(1 + q2

TF /q
2) (5.18)

= Vext(q)
(1 + q2

TF /q
2) (5.19)

—————————-
We can define a dielectric constant for the polarised free electron gas which is a function
of q and thus the spatial coordinate r.

ϵr(q) = (1 + q2
TF /q

2) (5.20)

Thus for the free electron gas in general, in the presence of an external non zero potential,
V (ω, q) we can define its relative permittivity as ϵr(ω, q), where

ϵr(ω, 0) = (1− ω2
P /ω

2) (5.21)
ϵr(0, q) = (1 + q2

TF /q
2) (5.22)

64



—————————-

As an example consider the case where the external potential is created by a single point charge
of magnitude e, such that ρext(r) = eδ(r). Thus we can write V (q) as;

V (q) = e

ϵo(q2 + q2
TF ) (5.23)

The FT of delta function at r = 0 is a constant, 1. Transforming back to real space via inverse Fourier
transform we can show that V (r) ∼ e

re
−q⃗T F .r⃗. This is also known as the screened Coulomb po-

tential or Yukawa potential. Evidently, 1/qTF gives a typical (decay) length scale of the potential.
{Hint: To work out the above you will need to compute a simple contour integral. The only pole that
will contribute to the integral will be at z = +iqTF }. Further, ∵ ∇V (r) = ρ/ϵo, calculate the ρ(r)
corresponding to the above potential and show that it is the same as that of a positive charge q = |e|
at r = 0, surrounded by a screening charge density of opposite sign.

What is the typical magnitude of qTF ? We know from above that 1/qTF gives the decay length
scale of the negative charge distribution surrounding the positive point charge. Now, qTF =

√
e2D(EF )

ϵo
;

q2
TF = e2D(EF )

ϵo
(5.24)

= e2

ϵo2π2 (2m
ℏ2 )3/2E

1/2
F (5.25)

EF = ℏ2

2mk2
F (5.26)

⇒ q2
TF = e2

ϵo2π2 (2m
ℏ2 )kF (5.27)

(5.28)

This gives the magnitude of qTF ∼ 0.55 Å for a typical electron density of 1022/cc. Which means that
any effect of localised charge distributions are effectively screened by free electrons in metals within a
length scale of half angstroms. Thus the absence of any band bending in the metal side of Schottky
junctions.

5.3 Problems
1. Revelant Problems in file Practice Problems.pdf

2. Derive expressions for the relative permittivity, ϵr(q) for 2D and 1D electron gas systems.

3. Due to the D(Ef ) factor, the Thomas-Fermi wavevector depends on the dimensionality of the
system. Show that in 3D it is given by the equation below. (aB) is the Bohr radius.

q2
TF = 4kF

πaB
(5.29)

4. What is the expression for q2
TF for 2D systems?

References:
1. Chapter 17 Solid state physics, N. W. Ashcroft and D. Mermin
2. Chapter 9 Physics of low-dimesnional semiconductors J.H. Davies
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6

Semiconductor Optoelectronic Devices

Semiconductor optoelectronic devices can be classified into two broad categories dependent on the
function they perform (i) light to electric voltage or current conversion - photovoltaics and (ii) electric
voltage or current to light conversion - electroluminescence. Electroluminescence (EL) is phenomenon
where a material/device emits light due to application of electric voltage or passing electric current.
EL is quite differnt from incandescence or black body radiation where emission results from the heat
content of the body. Importantly, EL have significantly low power consumption compared to other
lighting technologies, such as tungsten filament lamps, or neon or even fluorescent lamps.

6.1 Light Emitting Diodes

Light-emitting diodes (LEDs) are the most ubiquitous example of semiconductor devices showing EL.
EL primarily results from of radiative recombination of injected electrons and holes in a semicon-
ductor device. Prior to recombination, electrons and holes may be separated either by doping the
material to form a pn junction or through excitation by impact of high-energy electrons accelerated
by a strong electric field (as with the phosphors in electroluminescent displays). In the former, the
recombination process leading to light emission can be of intrinsic in nature i.e. band to band de-
excitation and recombination or extrinsic i.e. recombination of impurity bound excitons. LEDs may

Figure 6.1: Spectral ranges of various materials [Grundmann]

be classified based on their emission window and relevant applications as shown in the table 6.1.
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Figure 6.1 plots the spectral range of emission from various materials between the UV to the IR.
Table 6.1: LEDs Emission Ranges, Applications and Materials

Emission Applications Materials Refs
infrared (λ > 800 nm) remote controls, optocouplers GaAs/AlGaAs
visible 400 nm ≤ λ ≤ 800 nm white and coloured LEDs, lighting
red-yellow GaAsP/GaAs/AlInGaP/GaP
yellow-green GaP:N
green-blue SiC/GaN/InGaN
violet GaN
ultraviolet (λ < 400 nm) pump for white LEDs, biotechnology, sanitisation AlGaN

The total quantum efficiency (QE), η is the number of photons emitted from the device per injected
electron hole pair. It is given by the product of the internal quantum efficiency ηint and the external
QE ηext, i.e.

η = ηint × ηext (6.1)
The internal QE is the number of photons generated inside the semiconductor per injected electron
hole pair and is dependent on material quality, defect density and trap concentration. The external
QE is the number of photons leaving the device divided by the total number of generated photons
and is dependent on the geometry of the LED. Due to the large index of refraction of semiconductors
(ns ∼ 2.5 - 3.5), light can leave the semiconductor only under a small angle to the surface normal due
to total internal reflection. Against air (n ∼1), the critical angle is θc = sin?1(1/ns), which is 16deg
for GaAs and 17deg for GaP. Additionally, a portion of the photons that do not suffer total reflection
is reflected back from the surface with reflectivity R = {(ns − 1)/(ns + 1)}2 1, which is about 30% or
GaAs/air interface. These two parameters, i.e. θc and R decide the external QE, which for GaAs, is
0.7 ×4% ≃ 2.7%. Thus, typically only a small fraction of generated photons can leave the device and
contribute to the light emission.

6.2 Semiconductor Laser
Recall the fundamentals of a two-level atomic or molecular laser. Applying the Einstein relations that
we encountered before we can write the following set of equations for the two level system and the
related emission;

ℏω = ϵ1 − ϵ0 (6.2)
dN1
dt

= −A10N1 −B10D(ω)N1 (6.3)
dN0
dt

= −B01D(ω)N0 (6.4)

where D(ω) is the photon density of states and N1 and N0 are the occupancy of the energy states. At
equillibrium we can write B01g0 = B10g1 and that B10 = c3πA10/2ω2. The main difference between
a electroluminescent diode and a laser is that the latter emits coherent radiation. Hence, a Fabry-
Perot resonator is an essential part of a laser. In a crystal, two cleaved parallel faces serve for such
a resonator. If we denote by R as the reflectivity of a cleaved surface assuming L ≫ λ, the feedback
condition is given by;

R× exp
∫ L

0
(g − α)dz (6.5)

where g is the gain of the lasing media, ≈ (n1 − n0) and α is the absorption coefficient of the media,
arising due to nonradiative decay in the system. In general the gain coefficient obviously depends on
the photon flux which is also function of position z. For simplicity we neglect this dependence and
the integration yields

g = 1
L
ln( 1

R
) + α (6.6)

The above analysis allows us to model the various components of lasing that is possible from a
semiconductor diode. But the far more interesting application comes from the superlattices.

1valid for vertical incidence
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6.3 Superlattice Lasers

Consider as GaAs/AlGaAs superlattice contained 60 periods of alternating GaAs and Gao.65Alo.35As
layers, terminated by 60 nm of Gao.65Alo.35As on each side. These undoped structures constitute
the intrinsic regions of p+ − i − n+ diodes grown by molecular-beam epitaxy. The well thicknesses
were about 4 nm and the barrier thicknesses about 3 nm. An uniform E field in the superlattice was
produced by applying an external voltage on the p+ region (relative to the then + side). Excitation of
electrons i.e. population inversion, may be achieved by lowpower radiation matching the fundamental
gap of GaAs.

6.4 Quantum Cascade Lasers

The quantum cascade laser (QCL) is a special kind of semiconductor laser, usually emitting midIR
light. These lasers operate on intersubband electronic transitions of a semiconductor structure. Figure
6.2 shows what happens to an electron injected into the gain region: in each period of the structure,
it undergoes a first transition (black arrow) from sublevel 3 to 2 of a quantum well (which is the laser
transition on which stimulated emission occurs), then a non-radiative transition (slanted arrow) to
the lowest sublevel, before tunneling (dashed arrow) into the upper level of the next quantum well.
By using several tens or even 100 quantum wells in a series or cascade), a higher optical gain and
multiple photons per electron are obtained at the expense of a higher required electrical voltage. The
operation voltage can easily be of the order of 10 V, whereas few volts are sufficient for ordinary laser
diodes. As the transition energies are defined not by fixed material properties but rather by design

Figure 6.2: Schematic of the gain region of a QCL. The diagram shows the electron energy versus
position in the structure, which contains four quantum wells. The overall downward trend of energy
towards the right-hand side is caused by an applied dc electric field. In reality, each gain region must
be divided into an active region and an injector. [rp-photonics.com]

parameters (particularly by well and barrier thickness values of quantum wells), quantum cascade
lasers can be designed for operating wavelengths ranging from a few microns to well above 10 ?m, or
even in the terahertz region. The quantum well structure is embedded in a waveguide, and the laser
resonator is mostly of DBR or DFB type. There are also external-cavity lasers, where a wavelength
tuning element such as a diffraction grating is part of the resonator. Whereas continuously operating
room-temperature devices are normally limited to moderate output power levels in the milliwatt
region (although more than a watt is possible), multiple watts are easily possible with liquid-nitrogen
cooling. Even at room temperature, watt-level peak powers are possible when using short pump
pulses. The power conversion efficiency of QCL is typically of the order of a few tens of percent.
Recently, however, devices with efficiencies around 50% have been demonstrated although only for
cryogenic operation conditions. Most QCLs emit mid-infrared light. However, quantum cascade
lasers can also be made for generating terahertz radiation. Such devices constitute very compact and
simple sources of terahertz radiation. Recently, even room temperature terahertz generation has been
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achieved via internal difference frequency generation. Perhaps the most important applications for
quantum cascade lasers will be in the area of laser absorption spectroscopy of trace gases, e.g. for
detecting very small concentrations of pollutants in air. In addition to the suitable wavelength range,
QCLs usually feature a relatively narrow linewidth and good wavelength tunability, making them very
suitable for such applications.

6.5 Problems
1. Problems X, X, X in file Practice Problems.pdf

2. Derive expressions for the relative permittivity, ϵr(q) for 2D and 1D electron gas systems.

References:
1. Chapter 17 Solid state physics, N. W. Ashcroft and D. Mermin
2. Chapter 9 Physics of low-dimesnional semiconductors J.H. Davies
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